We demonstrate non-contact temperature measurement with one tenth of a kelvin precision at distances of several meters using omnidirectional laser emission from dye-doped cholesteric liquid crystal droplets freely floating in a fluid medium. Upon the excitation with a pulsed laser the liquid crystal droplet emits laser light due to 3D Bragg lasing in all directions. The spectral position of the lasing is highly dependent on temperature, which enables remote and contact-less temperature measurement with high precision. Both laser excitation and collection of light emitted by microlasers is performed through a wide telescope aperture optics at a distance of up to several meters. The optical excitation volume, where the droplets are excited and emitting the laser light is of the order of ten cubic millimeters. The measurement is performed with ten second accumulation time, when several droplets pass through the excitation volume due to their motion. The time of measurement could easily be shortened to less than a second by increasing the rate of the excitation laser. Since the method is based solely on measuring the spectral position of a single and strong laser line, it is quite insensitive to scattering, absorption and background signals, such as autofluorescence. This enables a wide use in science and industry, with a detection range exceeding tens of meters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.022615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!