We demonstrate the stabilization of an all-in-fiber polarization maintaining semi-conductor saturable absorber mirror (SESAM) mode locked frequency comb oscillator with an intra-cavity waveguide electro-optic phase modulator (EOM) to a narrow linewidth HeNe laser over 46 hours. The high feedback bandwidth of the EOM allows a coherent optical lock with an in-loop integrated phase noise of 1.12 rad (integrated from 10 Hz to 3 MHz) from the carrier signal. No piezo fiber stretcher was required to guarantee long-term stabilization, preventing mechanical degradation of the optical fibers and enabling a long lifetime of the oscillator. As an application a hybrid stabilization scheme is presented, where a comb tooth is phase locked to a longitudinal mode of the large ring laser "G" located at the Geodatic Observatory Wettzell. The hybrid stabilization scheme describes the optical lock of the frequency comb to the G laser and the simultaneous compensation of the ring laser frequency drift by comparing the comb repetition rate against an active H-maser reference. In this context the ring laser reached a fractional Allan deviation of 5 · 10 at an integration time of 16384 s.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.023798DOI Listing

Publication Analysis

Top Keywords

ring laser
12
comb oscillator
8
oscillator intra-cavity
8
frequency comb
8
optical lock
8
hybrid stabilization
8
stabilization scheme
8
comb
5
stabilization
5
laser
5

Similar Publications

Patients with progressing facial vitiligo who had been treated with upadacitinib, 308 nm excimer light and upadacitinib combined with 308 nm excimer light were selected for retrospective analysis and comparison of their efficacy and safety. Efficacy was evaluated using the Vitiligo Area Severity Index (VASI) and Dermatology Life Quality Index (DLQI) at baseline, after 8 weeks, and after 20 weeks. The progression of skin lesions was monitored through reflectance confocal microscopy (RCM), while adverse reactions were documented.

View Article and Find Full Text PDF

We demonstrate a compact ring-assisted Mach-Zehnder interferometer (RAMZI)-based silicon photonic interleaver with a 400 GHz free spectral range (FSR), featuring flat passbands exceeding a spectral range of 50 nm. Additionally, we introduce a novel, to the best of our knowledge, add-on structure and tuning method enabling automated compensation for fabrication imperfections, precise shaping of the RAMZI flat-top passbands, and alignment with Kerr comb lines. Experimental results have shown successful interleaving of eight channels of distributed-feedback (DFB) lasers as well as a 200 GHz Kerr comb, both achieving an extinction ratio of approximately 20 dB.

View Article and Find Full Text PDF

Despite major progress in the investigation of boron cluster anions, direct experimental study of neutral boron clusters remains a significant challenge because of the difficulty in size selection. Here we report a size-specific study of the neutral B9 cluster using threshold photoionization with a tunable vacuum ultraviolet free electron laser. The ionization potential of B9 is measured to be 8.

View Article and Find Full Text PDF

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!