Physical nanocomposite hydrogels composed of poly(2-hydroxyethylmethacrylate) and titanium oxide nanoparticles at low concentrations (<1.0 wt%) were synthesized. The effect of the nanoparticle content on the water swelling and mechanical properties of the hydrogels was investigated. Additionally, to study the influence of the polymer-nanoparticle interactions, a second type of nanocomposite was synthesized using surface functionalized nanoparticles with 3-methacryloxypropyltrimethoxysilane as the filler. The pristine nanoparticles increased the swelling capacity, especially at short time scales, and greater solvent diffusion coefficients and initial swelling rates were achieved. In contrast, the nanocomposite filled with functionalized nanoparticles exhibited a diminished swelling capacity, a constant diffusion coefficient and a significant decrease in the initial swelling rate. The mechanical properties were studied by dynamic mechanical analyses using stress-relaxation tests. Two Maxwell models in parallel agreed well with the curves of the relaxation modulus as a function of time and indicated that at short relaxation times, the nanoparticles did not cause an effect, but that at longer times, the nanoparticles decreased the relaxation time. Finally, hydrogel network parameters determined by swelling measurements and mechanical experiments indicated that the hydrogel with well distributed nanoparticles decreases the molar mass between crosslink point and the mesh size, while poorly distributed nanoparticles lead to larger mesh size. Our functional studies show that the addition of titanium oxide nanoparticles improves the ability of nanocomposite hydrogels to retain aggregates of skeletal muscle cells, revealing their potential use as suitable scaffolds for tissue repair strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2018.07.024 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India.
Promethazine hydrochloride (PMHC) is a vital drug that is used as an anticholinergic, antipsychotic, antihistaminic, analgesic, sedative, and neuroleptic. However, the overdosage of PMHC also causes reproductive variations, cardiac changes, hypotension, and endocrinal variations. Hence, the detection of PMHC is crucial.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom. Electronic address:
The fabrication of eco-friendly and high-performance composite materials has gained significant attention for multifunctional applications. Polyvinyl alcohol (PVA)/starch composite films containing varying amounts of TiCT MXene (2.5-10 wt%) were produced using a simple casting method.
View Article and Find Full Text PDFSci Rep
January 2025
Production Technology Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, 62521, Egypt.
Ball bearings face numerous challenges under harsh operating conditions of elevated pressure between the balls and other contacting parts of the bearing like drop in tribological properties. To address these challenges, this paper presents the first successful experimental investigation of incorporating an innovative hexagonal boron nitride (h-BN) into Aluminum-Carbon nanotube (Al-0.6 wt% CNTs) nanocomposites.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, Boulevard D. Mangeron 71, 700050 Iasi, Romania.
This study investigated the creation of nano-composites using recycled LDPE and added 7.5 wt% nanofillers of Al and Fe in two varying particle sizes to be used as hot-melt adhesives for reversible bonding processes with the use of microwave technology. Reversible bonding relates to circular economy enhancement practices, like repair, refurbishment, replacement, or renovation.
View Article and Find Full Text PDFMolecules
December 2024
Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
Biomass valorization and bio-based material development are of major research interest following the spirit of the circular economy. Aloe vera cultivation is a widespread agricultural activity oriented toward supplement production because of its well-known antioxidant and antimicrobial properties. Aloe vera juice production also produces a large amount of biomass byproducts that are usually landfilled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!