Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia.

Mater Sci Eng C Mater Biol Appl

Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação Controlada de Fármacos - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:

Published: November 2018

We developed a magnetic solid lipid nanoparticles formulation of paclitaxel (PTX-loaded MSLNs) via emulsification-diffusion method. The physicochemical characterization of PTX-loaded MSLNs was performed by AFM, DLS, determination of entrapment efficiency (EE) and drug loading (DL), DSC, VSM, and physical stability. The in vitro effect of temperature and pulsed magnetic hyperthermia on drug release were studied. PTX-loaded MSLNs had a particle diameter around 250 nm with a narrow size distribution, spherical morphology, EE of 67.3 ± 1.2% and a DL of 17.1 ± 0.4 μg/mg. A decrease of the melting point of the lipid was observed following the preparation of the MSLNs. A threefold increase in the in vitro drug release rate was seen when temperature was raised from 25 to 43 °C. The lipid coating of MPs confer a temperature-dependent drug release and magnetic hyperthermia was used to trigger controlled PTX release from MSLNs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.07.011DOI Listing

Publication Analysis

Top Keywords

magnetic hyperthermia
12
ptx-loaded mslns
12
drug release
12
magnetic solid
8
solid lipid
8
lipid nanoparticles
8
magnetic
5
mslns
5
triggered release
4
release paclitaxel
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

School of Biomedical Sciences, Kent State University, Kent, OH, USA.

Background: Accumulation of β-amyloid (Aβ) plaque in the brain is a pathological hallmark of Alzheimer's Disease (AD). We recently reported that the application of mild magnetic hyperthermia is feasible to target and disrupt Aβ plaques by means of generating localized heat on the surface of magnetic nanoparticles (MNPs) targeted to Aβ aggregates in response to a remotely applied alternating magnetic field (AMF) (Nanomedicine:NBM, 2021). The objective of the current study is to demonstrate the feasibility of mild magnetic hyperthermia stimulation (MNP/AMF) in clearing Aβ deposits in vivo using 5xFAD mice, a well-established transgenic AD mouse model.

View Article and Find Full Text PDF

This paper describes the design and initial proof-of-concept of a single pre-clinical transcranial focused ultrasound (FUS) system capable of performing histotripsy (mechanical ablation), hyperthermia, blood-brain barrier opening (BBBO), sonodynamic therapy, or neuromodulation in a murine brain. We have termed it the All-in-One FUS system for murine brain studies, which is the first FUS system of its kind. The 1.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC.

View Article and Find Full Text PDF

Background: Emamectin·chlorfenapyr is a compound comprising chlorfenapyr and emamectin benzoate that is widely used in agriculture. Chlorfenapyr toxicity has been verified in animals; however, its true mechanism and progression in humans remain to be elucidated. Cases of emamectin·chlorfenapyr poisoning are seldom.

View Article and Find Full Text PDF

Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!