Remotely assisted drug delivery by means of magnetic biopolymeric nanoplatforms has been utilized as an important tool to improve the delivery/release of hydrophobic drugs and to address their low cargo capacity. In this work, MnFeO magnetic nanoparticles (MNPs) were synthesized by thermal decomposition, coated with citrate and then functionalized with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers, with chitosan as polycation and sodium alginate as polyanion. Simultaneous conductimetric and potentiometric titrations were employed to optimize the LbL deposition and to enhance the loading capacity of nanoplatforms for curcumin, a hydrophobic drug used in cancer treatment. ~200 nm sized biopolymer platforms with ~12 nm homogeneously embedded MNPs were obtained and characterized by means of XRD, HRTEM, DLS, TGA, FTIR, XPS and fluorescence spectroscopy techniques to access structural, morphological and surface properties, to probe biopolymer functionalization and to quantify drug-loading. Charge reversals (±30 mV) after each deposition confirmed polyelectrolyte adsorption and a stable LbL assembly. Magnetic interparticle interaction was reduced in the biopolymeric structure, hinting at an optimized performance in magnetic hyperthermia for magneto-assisted drug release applications. Curcumin was encapsulated, resulting in an enhanced payload (~100 μg/mg). Nanocytotoxicity assays showed that the biopolymer capping enhanced the biocompatibility of nanoplatforms, maintaining entrapped curcumin. Our results indicate the potential of synthesized nanoplatforms as an alternative way of remotely delivering/releasing curcumin for medical purposes, upon application of an alternating magnetic field, demonstrating improved efficiency and reduced toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.06.039DOI Listing

Publication Analysis

Top Keywords

sodium alginate
8
lbl assembly
8
magnetic
6
nanoplatforms
5
curcumin
5
novel magneto-responsive
4
magneto-responsive nanoplatforms
4
nanoplatforms based
4
based mnfeo
4
mnfeo nanoparticles
4

Similar Publications

Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs.

J Mater Sci Mater Med

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.

Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.

View Article and Find Full Text PDF

All-Optically Controlled Memristive Device Based on CuO/TiO Heterostructure Toward Neuromorphic Visual System.

Research (Wash D C)

January 2025

Key Laboratory for UV Light-Emitting Materials and Technology (Ministry of Education), College of Physics, Northeast Normal University, Changchun, China.

The optoelectronic memristor integrates the multifunctionalities of image sensing, storage, and processing, which has been considered as the leading candidate to construct novel neuromorphic visual system. In particular, memristive materials with all-optical modulation and complementary metal oxide semiconductor (CMOS) compatibility are highly desired for energy-efficient image perception. As a p-type oxide material, CuO exhibits outstanding theoretical photoelectric conversion efficiency and broadband photoresponse.

View Article and Find Full Text PDF

Miniaturized Liver Disease Mimics to Gain Insights into MMP Expression during Disease Progression.

ACS Biomater Sci Eng

January 2025

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions, ranging from hepatic steatosis to steatohepatitis, fibrosis, and severe outcomes such as cirrhosis or cancer. The progression from hepatic steatosis to fibrosis involves significant extracellular matrix (ECM) remodeling, characterized by increased collagen deposition and cross-linking of ECM proteins, causing increased tissue stiffness and altered MMP expression patterns. Dysregulated MMP expression and extracellular acidosis are key contributors to NAFLD progression.

View Article and Find Full Text PDF

Objectives: This study focuses on both the formulation of bio-based microspheres containing fampridine for the treatment of multiple sclerosis and provides an alternative to the commercially available product (Fampyra 10 mg, Biogen).

Materials And Methods: The encapsulation of fampridine was achieved using polyvinyl alcohol (PVA) and sodium alginate (Na-Alg) polymers. Glutaraldehyde (GA) and hydrochloric acid (HCI) were used as crosslinking agents.

View Article and Find Full Text PDF

3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: In vitro and in vivo study.

Int J Biol Macromol

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:

Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!