Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Studies have used questionnaires of dysphonic symptoms to screen voice disorders. This study investigated whether the differential presentation of demographic and symptomatic features can be applied to computerized classification.
Methods: We recruited 100 patients with glottic neoplasm, 508 with phonotraumatic lesions, and 153 with unilateral vocal palsy. Statistical analyses revealed significantly different distributions of demographic and symptomatic variables. Machine learning algorithms, including decision tree, linear discriminant analysis, K-nearest neighbors, support vector machine, and artificial neural network, were applied to classify voice disorders.
Results: The results showed that demographic features were more effective for detecting neoplastic and phonotraumatic lesions, whereas symptoms were useful for detecting vocal palsy. When combining demographic and symptomatic variables, the artificial neural network achieved the highest accuracy of 83 ± 1.58%, whereas the accuracy achieved by other algorithms ranged from 74 to 82.6%. Decision tree analyses revealed that sex, age, smoking status, sudden onset of dysphonia, and 10-item voice handicap index scores were significant characteristics for classification.
Conclusion: This study demonstrated a significant difference in demographic and symptomatic features between glottic neoplasm, phonotraumatic lesions, and vocal palsy. These features may facilitate automatic classification of voice disorders through machine learning algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000492327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!