Background: Technological advances are enabling us to collect multimodal datasets at an increasing depth and resolution while with decreasing labors. Understanding complex interactions among multimodal datasets, however, is challenging.

New Method: In this study, we tested the interaction effect of multimodal datasets using a novel method called the kernel machine for detecting higher order interactions among biologically relevant multimodal data. Using a semiparametric method on a reproducing kernel Hilbert space, we formulated the proposed method as a standard mixed-effects linear model and derived a score-based variance component statistic to test higher order interactions between multimodal datasets.

Results: The method was evaluated using extensive numerical simulation and real data from the Mind Clinical Imaging Consortium with both schizophrenia patients and healthy controls. Our method identified 13-triplets that included 6 gene-derived SNPs, 10 ROIs, and 6 gene-specific DNA methylations that are correlated with the changes in hippocampal volume, suggesting that these triplets may be important for explaining schizophrenia-related neurodegeneration.

Comparison With Existing Method(s): The performance of the proposed method is compared with the following methods: test based on only first and first few principal components followed by multiple regression, and full principal component analysis regression, and the sequence kernel association test.

Conclusions: With strong evidence (p-value ≤0.000001), the triplet (MAGI2, CRBLCrus1.L, FBXO28) is a significant biomarker for schizophrenia patients. This novel method can be applicable to the study of other disease processes, where multimodal data analysis is a common task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415770PMC
http://dx.doi.org/10.1016/j.jneumeth.2018.08.027DOI Listing

Publication Analysis

Top Keywords

multimodal datasets
16
higher order
12
order interactions
12
interactions multimodal
12
method
9
kernel machine
8
detecting higher
8
novel method
8
multimodal data
8
proposed method
8

Similar Publications

The sharing of multimodal magnetic resonance imaging (MRI) data is of utmost importance in the field, as it enables a deeper understanding of facial nerve-related pathologies. However, there is a significant lack of multi-modal neuroimaging databases specifically focused on these conditions, which hampers our comprehensive knowledge of the neural foundations of facial paralysis. To address this critical gap and propel advancements in this area, we have released the Multimodal Neuroimaging Dataset of Meige Syndrome, Facial Paralysis, and Healthy Controls (MND-MFHC).

View Article and Find Full Text PDF

A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease.

Radiology

January 2025

From the Department of Cardiology (T.P., K.H., T.G., A.L., E.G., A.U., J.G.D., P.H.), MIRACL.ai (Multimodality Imaging for Research and Analysis Core Laboratory: and Artificial Intelligence) (T.P., S.T., K.H., T.G., A.L., E.G., A.U., J.G.D., P.H.), Inserm MASCOT-UMRS 942 (T.P., K.H., T.A.S., T.G., A.L., E.G., A.U., J.G.D., P.H.), and Department of Radiology (T.P., V.B., L.H., T.G.), Université Paris Cité, University Hospital of Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; Cardiovascular Magnetic Resonance Laboratory (T.P., T.H., T.U., F.S., S.C., P.G., J.G.) and Cardiac Computed Tomography Laboratory (T.P., T.H., T.L., B.C., T.U., F.S., S.C., H.B., A.N., M.A., P.G., J.G.), Hôpital Privé Jacques Cartier, Institut Cardiovasculaire Paris Sud, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300 Massy, France; Scientific Partnerships, Siemens Healthcare France, Saint-Denis, France (S.T.); Department of Cardiology, Hôpital Universitaire de Bruxelles-Hôpital Erasme, Brussels, Belgium (A.U.); and Department of Cardiovascular Imaging, American Hospital of Paris, Neuilly, France (O.V., M.S.).

Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD.

View Article and Find Full Text PDF

The experimental methods employed during metagenomic sequencing analyses of microbiome samples significantly impact the resulting data and typically vary substantially between laboratories. In this study, a full factorial experimental design was used to compare the effects of a select set of methodological choices (sample, operator, lot, extraction kit, variable region, and reference database) on the analysis of biologically diverse stool samples. For each parameter investigated, a main effect was calculated that allowed direct comparison both between methodological choices (bias effects) and between samples (real biological differences).

View Article and Find Full Text PDF

An empirical study of LLaMA3 quantization: from LLMs to MLLMs.

Vis Intell

December 2024

Department of Information Technology and Electrical Engineering, ETH Zurich, Sternwartstrasse 7, Zürich, Switzerland.

The LLaMA family, a collection of foundation language models ranging from 7B to 65B parameters, has become one of the most powerful open-source large language models (LLMs) and the popular LLM backbone of multi-modal large language models (MLLMs), widely used in computer vision and natural language understanding tasks. In particular, LLaMA3 models have recently been released and have achieved impressive performance in various domains with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-constrained scenarios, we explore LLaMA3's capabilities when quantized to low bit-width.

View Article and Find Full Text PDF

Research on bearing fault diagnosis based on a multimodal method.

Math Biosci Eng

December 2024

School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.

As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!