Design of Artificial Alcohol Oxidases: Alcohol Dehydrogenase-NADPH Oxidase Fusions for Continuous Oxidations.

Chembiochem

Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.

Published: January 2019

To expand the arsenal of industrially applicable oxidative enzymes, fusions of alcohol dehydrogenases with an NADPH-oxidase were designed. Three different alcohol dehydrogenases (LbADH, TbADH, ADHA) were expressed with a thermostable NADPH-oxidase fusion partner (PAMO C65D) and purified. The resulting bifunctional biocatalysts retained the catalytic properties of the individual enzymes, and acted essentially like alcohol oxidases: transforming alcohols to ketones by using dioxygen as mild oxidant, while merely requiring a catalytic amount of NADP . In small-scale reactions, the purified fusion enzymes show good performances, with 69-99 % conversion, 99 % ee with a racemic substrate, and high cofactor and enzyme total turnover numbers. As the fusion enzymes essentially act as oxidases, we found that commonly used high-throughput oxidase-activity screening methods can be used. Therefore, if needed, the fusion enzymes could be easily engineered to tune their properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899577PMC
http://dx.doi.org/10.1002/cbic.201800421DOI Listing

Publication Analysis

Top Keywords

fusion enzymes
12
alcohol oxidases
8
alcohol dehydrogenases
8
alcohol
5
enzymes
5
design artificial
4
artificial alcohol
4
oxidases alcohol
4
alcohol dehydrogenase-nadph
4
dehydrogenase-nadph oxidase
4

Similar Publications

Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.

iScience

January 2025

Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.

T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .

View Article and Find Full Text PDF

Background: Lung cancer continues to be the primary cause of cancer-related deaths globally, with the majority of cases identified at advanced stages. Genetic alterations, including mutations and gene fusions, are central to its molecular pathogenesis. The discovery of therapeutically targetable gene fusions, such as ALK, RET, ROS1, and NTRK1, has significantly advanced lung cancer management.

View Article and Find Full Text PDF

Multiplex digital nucleic acid analysis (NAA) allows the precise quantification of multiple target nucleic acids with single-molecule sensitivity, making it highly appealing for life science research and clinical diagnostics. Nucleic acid-guided endonucleases, such as CRISPR, have demonstrated great potential in digital NAA. However, performing multiplex digital NAA with an endonuclease remains challenging.

View Article and Find Full Text PDF

Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.

View Article and Find Full Text PDF

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!