Soy isoflavones are naturally occurring phytochemicals, which are biotransformed into functional derivatives through oxidative and reductive metabolic pathways of diverse microorganisms. Such representative derivatives, ortho-dihydroxyisoflavones (ODIs) and equols, have attracted great attention for their versatile health benefits since they were found from soybean fermented foods and human intestinal fluids. Recently, scientists in food technology, nutrition and microbiology began to understand their correct biosynthetic pathways and nutraceutical values, and have attempted to produce the valuable bioactive compounds using microbial fermentation and whole-cell/enzyme-based biotransformation. Furthermore, artificial design of microbial catalysts and/or protein engineering of oxidoreductases were also conducted to enhance production efficiency and regioselectivity of products. This minireview summarizes and introduces the past year's studies and recent advances in notable production of ODIs and equols, and provides information on available microbial species and their catalytic performance with perspectives on industrial application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fny195 | DOI Listing |
Phytother Res
December 2024
Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France.
In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet.
View Article and Find Full Text PDFMolecules
December 2024
Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland.
Isoflavones are found in numerous plant species within the Leguminosae family; however, soy isoflavones are particularly significant in practice and have been extensively studied in recent years. The health-promoting potential of orally administered soy isoflavones is widely documented in the scientific literature, and many review articles have been developed to highlight their significance. However, it should be noted that soy-isoflavone-rich extracts and isolated soy isoflavones, such as genistein and daidzein, are also often applied topically as ingredients in many formulations, including face creams, tonics, and emulsions.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany.
The increasing prevalence of metabolic diseases and the global drive toward achieving Sustainable Development Goals (SDGs) underscore the need for sustainable, nutrient-dense foods. Soybeans (Glycine max), a critical global crop, offer promising solutions; however, their predominant use as animal feed raises concerns regarding food security and environmental sustainability. Fermented soy products-including tempeh, natto, and miso-are rich in bioactive compounds such as peptides and isoflavones, which offer potential therapeutic effects and hold cultural and nutritional significance.
View Article and Find Full Text PDFExp Anim
December 2024
Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University.
Beige adipocytes arise from white adipocytes in response to cold or other stimuli, known as browning of white adipose. Beige adipocytes play a role similar to that of brown adipocytes, express high levels of uncoupling protein 1 (UCP1), and are responsible for energy consumption via heat production, thus aiding in fat loss. Although histidine (His) and soy isoflavone (Iso) co-ingestion reportedly reduces food intake, body weight, and fat accumulation in female rats, the underlying mechanism remains unclear.
View Article and Find Full Text PDFCurr Pharm Des
December 2024
Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, 332005, Jiangxi, China.
Introduction: Non-Small-Cell Lung Cancer (NSCLC) represents the leading cause of cancer deaths in the world. We previously found that daidzein, one of the key bioactivators in soy isoflavone, can inhibit NSCLC cell proliferation and migration, while the molecular mechanisms of daidzein in NSCLC remain unclear.
Methods: We developed an NSCLC nude mouse model using H1299 cells and treated the mice with daidzein (30 mg/kg/day).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!