Induced pluripotent stem cell (iPSC) technology enables the creation and selection of pluripotent cells with specific genetic traits. This report describes a pluripotent cell line created specifically to form replacement pancreatic cells as a therapy for insulin-dependent diabetes. Beginning with primary pancreatic tissue acquired through organ donation, cells were isolated, re-programmed using non-integrating vectors and exposed to a four day differentiation protocol to generate definitive endoderm, a developmental precursor to pancreas. The best performing iPSC lines were then subjected to a 12-day basic differentiation protocol to generate endocrine pancreas precursors. The line that most consistently generated highly pure populations was selected for further development. This approach created an iPSC-variant cell line, SR1423, with a genetic profile correlated with preferential differentiation toward endodermal lineage at the loss of mesodermal potential. This report further describes an improved differentiation protocol that, coupled with SR1423, generated populations of greater than 60% insulin-expressing cells that secrete insulin in response to glucose and are capable of reversing diabetes in rodents. Created and banked following cGMP guidelines, SR1423 is a candidate cell line for the production of insulin-producing cells useful for the treatment of diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124757 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203126 | PLOS |
Cells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of General Surgery (Gastrointestinal Surgery, Unit 1), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, China.
Purpose: The survival benefits of neoadjuvant chemotherapy (NAC) for locally advanced gastric cancer (LAGC) patients are inconsistent. This study aims to investigate how different tumor regression grades (TRG) influence the survival gains associated with NAC treatment.
Methods: This study compared the treatment outcomes of patients who underwent CSC (neoadjuvant chemotherapy - surgery - adjuvant chemotherapy) with those receiving traditional SC (surgery - adjuvant chemotherapy) treatment.
Calcif Tissue Int
January 2025
Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.
View Article and Find Full Text PDFMusculoskeletal Care
March 2025
Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
Study Design: Retrospective cohort study.
Objective: Tackling delayed diagnosis in degenerative cervical myelopathy (DCM) is a global research priority. On average, it takes 2-5 years, leading to worse outcomes from surgery and greater disability.
BMJ Open
January 2025
Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Introduction: Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!