3D symmetric tensor fields appear in many science and engineering fields, and topology-driven analysis is important in many of these application domains, such as solid mechanics and fluid dynamics. Degenerate curves and neutral surfaces are important topological features in 3D symmetric tensor fields. Existing methods to extract degenerate curves and neutral surfaces often miss parts of the curves and surfaces, respectively. Moreover, these methods are computationally expensive due to the lack of knowledge of structures of degenerate curves and neutral surfaces. In this paper, we provide theoretical analysis on the geometric and topological structures of degenerate curves and neutral surfaces of 3D linear tensor fields. These structures lead to parameterizations for degenerate curves and neutral surfaces that can not only provide more robust extraction of these features but also incur less computational cost. We demonstrate the benefits of our approach by applying our degenerate curve and neutral surface detection techniques to solid mechanics simulation data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2018.2864768DOI Listing

Publication Analysis

Top Keywords

degenerate curves
20
curves neutral
20
neutral surfaces
20
symmetric tensor
12
tensor fields
12
solid mechanics
8
structures degenerate
8
degenerate
6
curves
6
neutral
6

Similar Publications

Study Design/setting: A retrospective cohort study.

Objective: To compare long-term outcomes and complications of cervical disc replacement (CDR) and anterior cervical discectomy and fusion (ACDF) with cage-plate constructs (CPC) and stand-alone (SA) cages in treating degenerative cervical spondylosis.

Summary Of Background Data: ACDF is commonly used for cervical radiculopathy but may increase adjacent segment degeneration (ASD).

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration. Chondrocyte inflammation, apoptosis, and extracellular matrix degradation accelerated OA progression. MicroRNA (miRNA) has the potential to be a therapeutic method for osteoarthritis.

View Article and Find Full Text PDF

This research demonstrates a systematic curve fitting approach for acquiring parametric values of hyperelastic constitutive models for both healthy and enzymatically mediated degenerated cartilage to facilitate finite element modeling of cartilage. Several widely used phenomenological hyperelastic constitutive models were tested to adequately capture the changes in cartilage mechanics that vary with the differential/unequal abundance of matrix metalloproteinases (MMPs). Trauma and physiological conditions result in an increased production of collagenases (MMP-1) and gelatinases (MMP-9), which impacts the load-bearing ability of cartilage by significantly deteriorating its extracellular matrix (ECM).

View Article and Find Full Text PDF

Background: Hounsfield unit values (HU) are known to correlate with dual-energy X-ray absorptiometry (DXA), and they are gaining attention as a new method for assessing Bone mineral density (BMD) that is not affected by the limitations of DXA, such as degeneration, scoliosis, and vascular calcification. The purpose of this study was to compare the efficacy of HU and DXA T-scores in predicting adjacent vertebral fractures (AVF) following balloon kyphoplasty (BKP) using the same computed tomography and DXA at one institution.

Methods: The study included 84 cases (20 males, 64 females, mean age 79.

View Article and Find Full Text PDF

Purpose: Recovery rate of rod photoreceptor sensitivity (S2 gradient) following a bleach is reduced in age-related macular degeneration (AMD) due to diminished delivery of retinol across a grossly altered Bruch's membrane. Since triterpenoid saponins are known to improve transport across Bruch's, we have assessed their possible use for reversing the visual deficits in AMD.

Design: Double-blind, placebo controlled randomised clinical trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!