Learning 3D global features by aggregating multiple views has been introduced as a successful strategy for 3D shape analysis. In recent deep learning models with end-to-end training, pooling is a widely adopted procedure for view aggregation. However, pooling merely retains the max or mean value over all views, which disregards the content information of almost all views and also the spatial information among the views. To resolve these issues, we propose Sequential Views To Sequential Labels (SeqViews2SeqLabels) as a novel deep learning model with an encoder-decoder structure based on recurrent neural networks (RNNs) with attention. SeqViews2SeqLabels consists of two connected parts, an encoder-RNN followed by a decoder-RNN, that aim to learn the global features by aggregating sequential views and then performing shape classification from the learned global features, respectively. Specifically, the encoder-RNN learns the global features by simultaneously encoding the spatial and content information of sequential views, which captures the semantics of the view sequence. With the proposed prediction of sequential labels, the decoder-RNN performs more accurate classification using the learned global features by predicting sequential labels step by step. Learning to predict sequential labels provides more and finer discriminative information among shape classes to learn, which alleviates the overfitting problem inherent in training using a limited number of 3D shapes. Moreover, we introduce an attention mechanism to further improve the discriminative ability of SeqViews2SeqLabels. This mechanism increases the weight of views that are distinctive to each shape class, and it dramatically reduces the effect of selecting the first view position. Shape classification and retrieval results under three large-scale benchmarks verify that SeqViews2SeqLabels learns more discriminative global features by more effectively aggregating sequential views than state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2018.2868426DOI Listing

Publication Analysis

Top Keywords

global features
28
sequential views
20
sequential labels
16
features aggregating
12
aggregating sequential
12
views
10
sequential
9
learning global
8
deep learning
8
shape classification
8

Similar Publications

This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.

View Article and Find Full Text PDF

Human-induced global warming, primarily attributed to the rise in atmospheric CO, poses a substantial risk to the survival of humanity. While most research focuses on predicting annual CO emissions, which are crucial for setting long-term emission mitigation targets, the precise prediction of daily CO emissions is equally vital for setting short-term targets. This study examines the performance of 14 models in predicting daily CO emissions data from 1/1/2022 to 30/9/2023 across the top four polluting regions (China, India, the USA, and the EU27&UK).

View Article and Find Full Text PDF

Background: The efficacy of immune checkpoint inhibitors (ICIs) depends on the tumor immune microenvironment (TIME), with a preference for a T cell-inflamed TIME. However, challenges in tissue-based assessments via biopsies have triggered the exploration of non-invasive alternatives, such as radiomics, to comprehensively evaluate TIME across diverse cancers. To address these challenges, we develop an ICI response signature by integrating radiomics with T cell-inflamed gene-expression profiles.

View Article and Find Full Text PDF

Assessing the scientific integrity of the collected work of one author or author-group.

J Clin Epidemiol

January 2025

Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia; Aberdeen Centre for Women's Health Research, School of Medicine, University of Aberdeen, Aberdeen, UK. Electronic address:

Objective: No published methods for research integrity review include both statistical techniques applied to groups of randomised trials and individual assessment of papers. We propose a method based on practical experience of investigating data integrity across the collected papers of one author or author-group.

Study Design And Setting: We report our approach to investigating the collected papers of an author or author-group suspected of academic misconduct.

View Article and Find Full Text PDF

An efficient deep learning system for automatic detection of Acute Lymphoblastic Leukemia.

ISA Trans

January 2025

Department of Electronics and Telecommunication, C. V. Raman Global University, Bhubaneswar 752054, Odisha, India. Electronic address:

Early and highly accurate detection of rapidly damaging deadly disease like Acute Lymphoblastic Leukemia (ALL) is essential for providing appropriate treatment to save valuable lives. Recent development in deep learning, particularly transfer learning, is gaining a preferred trend of research in medical image processing because of their admirable performance, even with small datasets. It inspires us to develop a novel deep learning-based leukemia detection system in which an efficient and lightweight MobileNetV2 is used in conjunction with ShuffleNet to boost discrimination ability and enhance the receptive field via convolution layer succession.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!