Opposing mechanisms underlying differential changes in brain oxygen and temperature induced by intravenous morphine.

J Neurophysiol

Department of Health and Human Services, Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland.

Published: November 2018

Morphine remains widely used in clinical settings due to its potent analgesic properties. However, one of the gravest risks of all opioids is their ability to induce respiratory depression and subsequent brain hypoxia that can lead to coma and death. Due to these life-threatening effects, our goal was to examine the effects of intravenous morphine at a wide range of doses (0.1-6.4 mg/kg) on changes in brain oxygen levels in freely moving rats. We used oxygen sensors coupled with high-speed amperometry and conducted measurements in the nucleus accumbens (NAc) and subcutaneous (SC) space, the latter serving as a proxy for blood oxygen levels that depend on respiratory activity. We also examined the effects of morphine on NAc, muscle, and skin temperature. Morphine induced dose-dependent decreases in SC oxygen levels, suggesting respiratory depression, but differential effects on NAc oxygen: increases at low and moderate doses (0.1-1.6 mg/kg) and decreases at the highest dose tested (6.4 mg/kg). Morphine also increased brain temperature at low and moderate doses but induced a biphasic, down-up change at high doses. The oxygen increases appear to result from a neurovascular coupling mechanism via local vasodilation and enhanced oxygen entry into brain tissue to compensate for blood oxygen drops caused by modest respiratory depression. At high morphine doses, this adaptive mechanism is unable to compensate for the enhanced respiratory depression, resulting in brain hypoxia. Hence, morphine appears to be safe when used as an analgesic at clinically relevant doses but poses great risks at high doses, likely to be abused by drug users. NEW & NOTEWORTHY With the use of oxygen sensors coupled with amperometry, we show that morphine induces differential effects on brain oxygen levels, slightly increasing them at low doses and strongly decreasing them at high doses. In contrast, morphine dose dependently decreases oxygen levels in the SC space. Therefore, morphine engages opposing mechanisms affecting brain oxygen levels, enhancing them through neurovascular coupling at low, clinically relevant doses and decreasing them due to dramatic respiratory depression at high doses, likely to be abused.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295537PMC
http://dx.doi.org/10.1152/jn.00445.2018DOI Listing

Publication Analysis

Top Keywords

oxygen levels
24
respiratory depression
20
brain oxygen
16
high doses
16
oxygen
13
morphine
11
doses
11
opposing mechanisms
8
brain
8
changes brain
8

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Introduction: This study investigated the role of fibroblast growth factor 23 (FGF23)/Klotho in the mortality of patients hospitalized with coronavirus disease 2019 (COVID-19), excluding those with chronic kidney disease (CKD).

Methodology: A prospective cross-sectional study was conducted from April 2021 to May 2022. Patients who tested positive for COVID-19 via polymerase chain reaction and were hospitalized, were classified into two groups (survivors and non-survivors) at the end of their hospital follow-up.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Hyperbaric oxygen therapy and corticosteroids as combined treatment for acute acoustic trauma.

Eur Arch Otorhinolaryngol

January 2025

Motion Sickness and Human Performance Laboratory, The Israel Naval Medical Institute, IDF Medical Corps, Haifa, Israel.

Purpose: Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss (SNHL) due to exposure to high intensity impulse noise. There are no acceptable treatment guidelines, although several studies showed steroids could be effective in restoring hearing levels. A recent report suggested that steroids combined with hyperbaric oxygen therapy (HBOT) are a superior regiment for AAT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!