Fatty acids (FAs) are thought to impact carcinogenesis by affecting cell signaling. A case-control study including 250 patients with urothelial bladder cancer (UBC) and 250 controls was conducted. Plasma FAs composition was assessed using capillary gas chromatography. Associations of individual and classes of FAs with UBC were controlled for the main risk factors for UBC. Plasma FAs profile was different in patients compared to controls. Higher levels (third tertile vs. first tertile) in palmitic acid (PA) [multi-adjusted OR (95% CI), 1.83 (1.14-2.92)], and n - 6:n - 3 FA ratio [4.13 (2.38-7.16)] were associated with increased risk for UBC [multi-adjusted OR (95% CI), 1.83 (1.14-2.92)]. In contrast, higher levels (third tertile vs. first tertile) in oleic [0.54 (0.34-0.86)], dihomo-γ-linolenic (DGLA) [0.47 (0.29-0.74)], eicosapentaenoic (EPA) [0.32 (0.19-0.52)], and docosahexaenoic (DHA) acids [0.33 (0.20-0.53)] were associated with lower risk for UBC. Although the study design does not allow proving causality, the findings suggest a possible protective role of oleic acid and marine n - 3 polyunsaturated FAs (PUFAs) against bladder carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635581.2018.1497668DOI Listing

Publication Analysis

Top Keywords

oleic acid
8
acid marine
8
marine n - 3
8
n - 3 polyunsaturated
8
fatty acids
8
patients urothelial
8
urothelial bladder
8
bladder cancer
8
plasma fas
8
higher levels
8

Similar Publications

The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.

View Article and Find Full Text PDF

Exploring sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens.

Mar Drugs

November 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.

View Article and Find Full Text PDF

Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibres. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth.

Methods: Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2.

View Article and Find Full Text PDF

Characterizing the size, structure, and composition of nanoparticles is vital in predicting and understanding their macroscopic properties. In this work, charge detection mass spectrometry (CDMS) was used to analyze nanocapsules (∼10-200 MDa) consisting of a liquid oleic acid core surrounded by a dense silica outer shell. CDMS is an emerging method for nanoparticle analysis that can rapidly measure the mass and charge of thousands of individual nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!