Impairment of Fatty Acid Oxidation in Alveolar Epithelial Cells Mediates Acute Lung Injury.

Am J Respir Cell Mol Biol

1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.

Published: February 2019

Profound impairment in cellular oxygen consumption, referred to as cytopathic dysoxia, is one of the pathological hallmarks in the lungs of patients with pathogen-induced acute lung injury (ALI). However, the underlying mechanism for this functional defect remains largely unexplored. In this study, we found that primary mouse alveolar epithelial cells (AECs) conducted robust fatty acid oxidation (FAO). More importantly, FAO was strikingly impaired in AECs of mice with LPS-induced ALI. The metabolic deficiency in these cells was likely due to decreased expression of key mediators involved in FAO and mitochondrial bioenergenesis, such as peroxisome proliferator-activated receptor γ coactivator (PGC)-1α, carnitine palmitoyltransferase 1A, and medium-chain acyl-CoA dehydrogenase (CAD). We found that treatment of alveolar epithelial line MLE-12 cells with BAL fluids from mice with ALI decreased FAO, and this effect was largely replicated in MLE-12 cells treated with the proinflammatory cytokine TNF-α, which was consistent with downregulations of PGC-1α, carnitine palmitoyltransferase 1A, long-chain CAD, and medium-chain CAD in the same treated cells. Furthermore, we found that the BAL fluids from ALI mice and TNF-α inhibited MLE-12 bioenergenesis and promoted cell apoptosis. In delineation of the role of FAO in ALI in vivo, we found that conditional ablation of AEC PGC-1α aggravated LPS-induced ALI. In contrast, fenofibrate, an activator of the PPAR-α/PGC-1α cascade, protected mice from this pathology. In summary, these data suggest that FAO is essential to AEC bioenergenesis and functional homeostasis. This study also indicates that FAO impairment-induced AEC dysfunction is an important contributing factor to the pathogenesis of ALI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376408PMC
http://dx.doi.org/10.1165/rcmb.2018-0152OCDOI Listing

Publication Analysis

Top Keywords

alveolar epithelial
12
fatty acid
8
acid oxidation
8
epithelial cells
8
acute lung
8
lung injury
8
lps-induced ali
8
pgc-1α carnitine
8
carnitine palmitoyltransferase
8
mle-12 cells
8

Similar Publications

Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.

View Article and Find Full Text PDF

Sea spray aerosol (SSA) is a complex mixture of natural substances that can be inhaled by coastal residents. Previous studies have suggested that SSA may have positive effects on human health, but the molecular mechanisms and the factors influencing these effects are poorly understood. In this study, we exposed human bronchial epithelial cells (BEAS-2B) to natural SSA samples, collected monthly using quartz microfiber filters mounted on tripods within 15 m of the waterline, with air drawn through pumps, throughout a one-year period at the Ostend coast, Belgium, and measured cellular gene expression changes using RNA sequencing.

View Article and Find Full Text PDF

Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

View Article and Find Full Text PDF

Peribronchiolar metaplasia is an uncommon lesion characterized by fibrosis and bronchiolar epithelial cell proliferation along the peribronchiolar alveolar walls, primarily in response to bronchiolar and peribronchiolar injuries. Peribronchiolar metaplasia usually appears as ground glass nodules or sub-solid nodules on computed tomography. However, we present an exceptional case of peribronchiolar metaplasia that appeared as a solitary solid nodule on computed tomography.

View Article and Find Full Text PDF

ALK-positive large B-cell lymphoma (ALK+ LBCL) is a rare neoplasm with an aggressive course and poor therapeutic response to the standard R-CHOP regimen. Owing to its negativity for usual B- and T-cell markers and immunopositivity for epithelial markers, it can be easily misdiagnosed if it is not contemplated. To study the clinicopathological parameters of cases of ALK+ LBCL diagnosed at our institution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!