We present an efficient methodology to study spin waves in disordered materials. The approach is based on a Heisenberg model and enables calculations of magnon properties in spin systems with disorder of an arbitrary kind and concentration of impurities. Disorder effects are taken into account within two complementary approaches. Magnons in systems with substitutional (uncorrelated) disorder can be efficiently calculated within a single-site coherent potential approximation for the Heisenberg model. From the computation point of view the method is inexpensive and directly applicable to systems like alloys and doped materials. It is shown that it performs exceedingly well across all concentrations and wave vectors. Another way is the direct numerical simulation of large supercells using a configurational average over possible samples. This approach is applicable to systems with an arbitrary kind of disorder. The effective interaction between magnetic moments entering the Heisenberg model can be obtained from first-principles using a self-consistent Green function method within the density functional theory. Thus, our method can be viewed as an ab initio approach and can be used for calculations of magnons in real materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aadefb | DOI Listing |
Inorg Chem
December 2024
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.
View Article and Find Full Text PDFMicron
December 2024
University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
Optical simulators for the Ising model have demonstrated great promise for solving challenging problems in physics and beyond. Here, we develop a spatial optical simulator for a variety of classical statistical systems, including the clock, XY, Potts, and Heisenberg models, utilizing a digital micromirror device composed of a large number of tiny mirrors. Spins, with desired amplitudes or phases of the statistical models, are precisely encoded by a patch of mirrors with a superpixel approach.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, Rice University, Houston, Texas 77005, USA.
The Jordan-Wigner transformation permits one to convert spin 1/2 operators into spinless fermion ones, or vice versa. In some cases, it transforms an interacting spin Hamiltonian into a noninteracting fermionic one, which is exactly solved at the mean-field level. Even when the resulting fermionic Hamiltonian is interacting, its mean-field solution can provide surprisingly accurate energies and correlation functions.
View Article and Find Full Text PDFWater Sci Technol
December 2024
University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, Kassel 34125, Germany E-mail:
This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!