Purpose: This study aims to develop, implement, and evaluate a dual-tuned C/ H head coil for integrated positron emission tomography/magnetic resonance (PET/MR) neuroimaging. The radiofrequency (RF) head coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification.
Material And Methods: A dual-tuned C/ H RF head coil featuring a 16-rung birdcage was designed to be used for integrated PET/MR hybrid imaging. While the open birdcage design can be considered inherently PET transparent, all further electronic RF components were placed as far as possible outside of the field-of-view (FOV) of the PET detectors. The RF coil features a rigid geometry and thin-walled casing. Attenuation correction of the RF head coil is performed by generating and applying a dedicated 3D CT-based template attenuation map (μmap). Attenuation correction was systematically evaluated in phantom experiments using a large-volume cylindrical emission phantom filled with 18-F-Fluordesoxyglucose (FDG) radiotracer. The PET/MR imaging performance and PET attenuation correction were then evaluated in a patient study including six patients.
Results: The dual-tuned RF head coil causes a mean relative attenuation difference of 8.8% across the volume of the cylindrical phantom, while the local relative differences range between 1% and 25%. Applying attenuation correction, the relative difference between the two measurements with and without RF coil is reduced to mean value of 0.5%, with local differences of ±3.6%. The quantitative results of the phantom measurements were corroborated by patient PET/MR measurements. Patient scans using the RF head coil show a decrease of PET signal of 5.17% ± 0.81% when compared to the setup without RF head coil in place, which served as a reference scan. When applying attenuation correction of the RF coil in the patient measurements, the mean difference to a measurement without RF coil was reduced to -0.87% ± 0.65%.
Conclusion: A dual-tuned C/ H RF head coil was designed and evaluated regarding its potential use in integrated PET/MR hybrid imaging. Attenuation correction was successfully applied. In conclusion, the RF head coil was successfully integrated into PET/MR hybrid imaging and can now be used for C/ H multinuclear hybrid neuroimaging in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.13171 | DOI Listing |
Clin Neuroradiol
January 2025
Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), 24105, Kiel, Germany.
Purpose: Magnetic Resonance Imaging based brain segmentation and volumetry has become an important tool in clinical routine and research. However the impact of the used hardware is only barely investigated. This study aims to assess the influence of scanner manufacturer, field strength and head-coil on volumetry results.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
The position and orientation of transcranial magnetic stimulation (TMS) coil, which we collectively refer to as coil placement, significantly affect both the assessment and modulation of cortical excitability. TMS electric field (E-field) simulation can be used to identify optimal coil placement. However, the present E-field simulation required a laborious segmentation and meshing procedure to determine optimal coil placement.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.
While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Neurosurgery, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, China.
Traumatic direct type carotid cavernous fistula (CCF) is an acquired arteriovenous shunt between the carotid artery and the cavernous sinus post severe craniofacial trauma or iatrogenic injury. We reported a 46-year-old woman who had developed a traumatic direct type CCF after severe head trauma with a skull base fracture and brain contusion hemorrhage. The clinical manifestations of the patient included pulsatile exophthalmos, proptosis, bruits, chemosis, and a decline in consciousness.
View Article and Find Full Text PDFPhys Med Biol
January 2025
CNRS, BAOBAB, CEA, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, 91191, FRANCE.
Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR). In this work, we address the pSARassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!