The effects of β-alanine (BA) and sodium bicarbonate (SB) on energy metabolism during work-matched high-intensity exercise and cycling time-trial performance were examined in 71 male cyclists. They were randomised to receive BA + placebo (BA, n = 18), placebo + SB (SB, n = 17), BA + SB (BASB, n = 19), or placebo + placebo (PLA, n = 18). BA was supplemented for 28 days (6.4 g day) and SB (0.3 g kg) ingested 60 min before exercise on the post-supplementation trial. Dextrose and calcium carbonate were placebos for BA and SB, respectively. Before (PRE) and after (POST) supplementation, participants performed a high-intensity intermittent cycling test (HICT-110%) consisting of four 60-s bouts at 110% of their maximal power output (60-s rest between bouts). The estimated contribution of the energy systems was calculated for each bout in 39 of the participants (BA: n = 9; SB: n = 10; BASB: n = 10, PLA: n = 10). Ten minutes after HICT-110%, cycling performance was determined in a 30-kJ time-trial test in all participants. Both groups receiving SB increased estimated glycolytic contribution in the overall HICT-110%, which approached significance (SB: + 23%, p = 0.068 vs. PRE; BASB: + 18%, p = 0.059 vs. PRE). No effects of supplementation were observed for the estimated oxidative and ATP-PCr systems. Time to complete 30 kJ was not significantly changed by any of the treatments, although a trend toward significance was shown in the BASB group (p = 0.06). We conclude that SB, but not BA, increases the estimated glycolytic contribution to high-intensity intermittent exercise when total work done is controlled and that BA and SB, either alone or in combination, do not improve short-duration cycling time-trial performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-018-2643-2 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
January 2025
College of Sport and Health, Shandong Sport University, Jinan, Shandong, 250102, China.
Obesity can change the immune microenvironment of adipose tissue and induce inflammation. This study is dedicated to exploring the internal mechanism by which different intensities of exercise reprogram the immune microenvironment of epididymal adipose tissue in nutritionally obese mice. C57BL/6J male obese mouse models were constructed by high-fat diet, which were respectively obese control group (OC), moderate intensity continuous exercise group (HF-M), high intensity continuous exercise group (HF-H) and high intensity intermittent exercise group (HF-T).
View Article and Find Full Text PDFSports (Basel)
November 2024
Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132 Genoa, Italy.
The Multiple Frequency Speed of Kick Test (FSKT) is used to investigate which characteristics are necessary for, contribute to, or limit the ability to repeat high-intensity intermittent efforts in taekwondo. This cross-sectional study investigated the relationship between anthropometric and body composition characteristics, muscle power performance, and sport-specific anaerobic performance. Nineteen black belt taekwondo athletes (mean ± SD age: 17.
View Article and Find Full Text PDFIntroduction: Research on the effects of training programs involving small-sided games (SSG) versus high-intensity interval training (HIIT) has been increasing in recent years. However, there is limited understanding of how an individual's initial physical fitness level might influence the extent of adaptations achieved through these programs. This study aimed to compare the impacts of SSG and HIIT on male soccer players, while also considering the players' athleticism, categorized into lower and higher total athleticism score (TSA).
View Article and Find Full Text PDFAppl Physiol Nutr Metab
December 2024
Ritsumeikan Daigaku - Biwako Kusatsu Campus, Faculty of Sport and Health Science, Kusatsu, Shiga, Japan;
Iran J Med Sci
November 2024
Department of Exercise Physiology, Lamerd Branch, Islamic Azad University, Lamerd, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!