The stratum corneum (SC) consists of corneocytes surrounded by a neutral lipid-enriched intercellular matrix. Ceramides represent approximately 50% of intercellular lipids, and play important roles in retaining epidermal water. The SC also contains covalently bound ceramides, which are thought to play a crucial role in the formation of lamellar structures, and are involved in maintaining skin barrier function. A previous report showed that levels of free ceramides in human SC changed with the seasons and age, although whether the content of different species of covalently bound ceramides also underwent such temporal changes was unclear. Here, SC samples were taken from 99 healthy individuals of different ages (24-64 years) and during different seasons. The content of different molecular species of covalently bound ceramides in the samples was quantified using HPLC-MS/MS. The levels of total covalently bound ceramides (Total-Cers) significantly decreased approximately 50% in autumn and winter, compared with that of spring and summer. The levels of covalently bound ceramides containing saturated fatty acids (SFA-Cers) in the spring and summer were approximately 2.3-fold higher than that seen in autumn and winter, whereas the level of covalently bound ceramides containing unsaturated fatty acids (USFA-Cers) in spring and summer were approximately 1.6-fold higher than that in autumn and winter. Furthermore, the ratio between SFA-Cers and USFA-Cers was significantly lower in spring and summer than in autumn and winter. The levels of SFA-Cers, but not USFA-Cers, were significantly lower in individuals ≥ 50 years old compared to those who are 30- and 40-years old in the spring. Our study showed for the first time that, similar to free ceramides, the level of covalently bound ceramides changed with the seasons. However, age-related changes in covalently bound ceramide content were limited in that only the amount of SFA-Cers in the spring was lower in older individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00403-018-1859-zDOI Listing

Publication Analysis

Top Keywords

covalently bound
36
bound ceramides
28
autumn winter
16
spring summer
16
ceramides
11
covalently
9
bound
9
changes covalently
8
bound ceramide
8
ceramide content
8

Similar Publications

Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine.

View Article and Find Full Text PDF

PEG-PLGA nanoparticles deposited in and .

J Pharm Anal

December 2024

Institute of Infectious Disease and Infection Control, Jena University Hospital, Jena, 07747, Germany.

In our prior research, polymer nanoparticles (NPs) containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded () and (. ) cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(d,l-lactic--glycolic acid) (PLGA) and poly(ethylene glycol)--PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine (Cy5) or noncovalently bound with freely embedded cationic rhodamine B (RhB), which served as a drug surrogate.

View Article and Find Full Text PDF

Investigation of serotonin-receptor interactions, stability and signal transduction pathways via molecular dynamics simulations.

Biophys Chem

December 2024

Department of Chemistry and Center for Atomic, Molecular, Optical Sciences and Technologies (CAMOST), Indian Institute of Science, Education and Research (IISER) Tirupati, Yerpedu Mandal, Tirupati 517619, India. Electronic address:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT receptor (5HTR) via electrostatic interactions. Key residues for electrostatic interactions were identified via bond distance analysis and frustration analysis methods.

View Article and Find Full Text PDF

Thermodynamic Stability in Transition Metal-Hydrogen Dications: Potential Energy Curves, Spectroscopic Parameters, and Bonding for VH.

J Comput Chem

January 2025

Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.

Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.

View Article and Find Full Text PDF

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!