Background: To identify the effects of sedative agent selection on morbidity, mortality, and length of stay in patients with suspected increase in intracranial pressure. Recent trends and developments have resulted in changes to medications that were previously utilized as pharmacological adjuncts in the sedation and intubation of patients with suspected increases in intracranial pressure. Medications that were previously considered contraindicated are now being used with increasing regularity without demonstrated safety and effectiveness. The primary objective of this study is to evaluate and compare the use of Ketamine as an induction agent for patients with increased intracranial pressure. The secondary objective was to evaluate and compare the use of Etomidate, Midazolam, and Ketamine in patients with increased intracranial pressure.
Methods: We conducted a retrospective chart review of patients transported to our facility with evidence of intracranial hypertension that were intubated before trauma center arrival. Patients were identified during a 22-month period from January 2014 to October 2015. Goals were to evaluate the impact of sedative agent selection on morbidity, mortality, and length of stay.
Results: During the review 148 patients were identified as meeting inclusion criteria, 52 were excluded due to incomplete data. Of those the patients primarily received; Etomidate, Ketamine, and Midazolam. Patients in the Ketamine group were found to have a lower mortality rate after injury stratification.
Conclusion: Patients with intracranial hypertension should not be excluded from receiving Ketamine during intubation out of concern for worsening outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117539 | PMC |
http://dx.doi.org/10.5847/wjem.j.1920-8642.2018.04.003 | DOI Listing |
NPJ Digit Med
January 2025
Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
Noninvasive methods for intracranial pressure (ICP) monitoring have emerged, but none has successfully replaced invasive techniques. This observational study developed and tested a machine learning (ML) model to estimate ICP using waveforms from a cranial extensometer device (brain4care [B4C] System). The model explored multiple waveform parameters to optimize mean ICP estimation.
View Article and Find Full Text PDFWorld Neurosurg
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China. Electronic address:
Objective: To investigate the risk factors and their diagnostic efficacy for postoperative intestinal mucosal barrier dysfunction (IBD) following severe traumatic brain injury (sTBI).
Methods: There were 140 patients with sTBI enrolled in this study. Univariate and multivariate logistic regression analyses were conducted to assess the relationship between the clinical data and postoperative IBD in sTBI patients and determine the independent risk factors.
Sensors (Basel)
January 2025
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
Purpose: Intracranial pressure (ICP) monitoring is in most studies considered essential in avoiding secondary brain injury in patients with intracranial pathologies. Invasive monitoring of ICP is accurate but is unavailable in many clinical and prehospital settings. Non-invasive modalities have historically been difficult to implement clinically.
View Article and Find Full Text PDFEye (Lond)
January 2025
Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
Background/objectives: Idiopathic intracranial hypertension (IIH) is a disease which threatens vision and causes disabling headaches, affecting women of childbearing age with obesity. It is characterised by raised intracranial pressure (ICP), measured invasively either with lumbar punctures or intracranially-inserted monitors. There is an unmet clinical need to develop non-invasive means to assess ICP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!