Pain is a medical condition that interferes with normal human life and work and reduces human well-being worldwide. The voltage-gated sodium channel (VGSC) human Na1.7 (hNa1.7) is a compelling target that plays a key role in human pain signaling. The 33-residue peptide µ-TRTX-Hhn2b (HNTX-I), a member of Na-targeting spider toxin (NaSpTx) family 1, has shown negligible activity on mammalian VGSCs, including the hNa1.7 channel. We engineered analogues of HNTX-I based on sequence conservation in NaSpTx family 1. Substitution of Asn for Ser at position 23 or Asp for His at position 26 conferred potent activity against hNa1.7. Moreover, multiple site mutations combined together afforded improvements in potency. Ultimately, we generated an analogue E1G⁻N23S⁻D26H⁻L32W with >300-fold improved potency compared with wild-type HNTX-1 on hNa1.7 (IC 0.036 ± 0.007 µM). Structural simulation suggested that the charged surface and the hydrophobic surface of the modified peptide are responsible for binding affinity to the hNa1.7 channel, while variable residues may determine pharmacological specificity. Therefore, this study provides a profile for drug design targeting the hNa1.7 channel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162447 | PMC |
http://dx.doi.org/10.3390/toxins10090358 | DOI Listing |
J Hand Surg Am
January 2025
Hand and Upper Extremity Division of Plastic and Reconstructive Surgery, University of California Davis, Sacramento, CA.
Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.
View Article and Find Full Text PDFNano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of ECE, Kallam Haranadhareddy Institute of Technology, Guntur, Andhra Pradesh, India.
Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geography, Rampurhat College, PO-Rampurhat, Dist-Birbhum, 731224, India.
In fluvial environments, the shifting of river channels and bank erosion are frequently caused by both natural and anthropogenic factors. Riverine hazards like bank erosion and course alterations offer severe issues to the riparian villages along the lower basin of the Tista River in India, which substantially influence the livelihoods of inhabitants living there. This research addressed river channel shifting tendency and identified major bank erosion-prone villages along the lower course of the Tista River and challenges to the livelihoods of the riparian people.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!