α-Ketoglutarate is an important metabolic intermediate that acts as a cofactor for several chromatin-modifying enzymes, including histone demethylases and the Tet family of enzymes that are involved in DNA demethylation. In this review, we focus on the function and genomic localization of these α-ketoglutarate-dependent enzymes in the maintenance of pluripotency during cellular reprogramming to induced pluripotent stem cells and in disruption of pluripotency during differentiation. The enzymatic function of many of these α-ketoglutarate-dependent proteins is required for pluripotency acquisition and maintenance. A better understanding of their specific function will be essential in furthering our knowledge of pluripotency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462505PMC
http://dx.doi.org/10.1074/jbc.TM118.000831DOI Listing

Publication Analysis

Top Keywords

α-ketoglutarate-dependent proteins
8
pluripotency acquisition
8
acquisition maintenance
8
pluripotency
5
role α-ketoglutarate-dependent
4
proteins pluripotency
4
maintenance α-ketoglutarate
4
α-ketoglutarate metabolic
4
metabolic intermediate
4
intermediate acts
4

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!