Regulatory T cells (Tregs) are an important contributor to the immunosuppressive tumor microenvironment. To date, however, they have been difficult to target for therapy. One emerging new aspect of Treg biology is their apparent functional instability in the face of certain acute proinflammatory signals such as IL6 and IFNγ. Under the right conditions, these signals can cause a rapid loss of suppressor activity and reprogramming of the Tregs into a proinflammatory phenotype. In this review, we propose the hypothesis that this phenotypic modulation does not reflect infidelity to the Treg lineage, but rather represents a natural, physiologic response of Tregs during beneficial inflammation. In tumors, however, this inflammation-induced Treg destabilization is actively opposed by dominant stabilizing factors such as indoleamine 2,3-dioxygenase and the PTEN phosphatase pathway in Tregs. Under such conditions, tumor-associated Tregs remain highly suppressive and inhibit cross-presentation of tumor antigens released by dying tumor cells. Interrupting these Treg stabilizing pathways can render tumor-associated Tregs sensitive to rapid destabilization during immunotherapy, or during the wave of cell death following chemotherapy or radiation, thus enhancing antitumor immune responses. Understanding the emerging pathways of Treg stabilization and destabilization may reveal new molecular targets for therapy. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139039 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-18-1351 | DOI Listing |
Regulatory T cells (Tregs) actively engage in immune suppression to prevent autoimmune diseases but also inhibit anti-tumor immunity. Although Tregs express a TCR repertoire with relatively high affinities to self, they are normally quite stable and their inflammatory programs are intrinsically suppressed. We report here that diacylglycerol (DAG) kinases (DGK) ( and ( are crucial for homeostasis, suppression of proinflammatory programs, and stability of Tregs and for enforcing their dependence on CD28 costimulatory signal.
View Article and Find Full Text PDFMol Med
October 2024
Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China.
Background: Docetaxel (DTX) resistance attenuates anti-tumor effects of DTX on prostate cancer (mCRPC) and drug resistance was related to Treg expansion in tumors. ZNF667-AS1 played a suppressing role in various tumors and tumor-derived exosomes carry lncRNAs to participate in tumor progression. Here, the effects of ZNF667-AS1 on malignant characteristics and DTX resistance in PC and the effect and its underlying molecular mechanism of tumor-derived exosomes carrying ZNF667-AS1 on Treg expansion were investigated.
View Article and Find Full Text PDFCell Immunol
November 2024
Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen China. Electronic address:
Osteoarthritis (OA) is a chronic inflammatory joint disorder characterized by cartilage degradation and bone remodeling. This study investigated the regulatory role of metallothionein 1 (MT1) in modulating immune responses and the balance between regulatory T cells (Treg) and T helper 17 cells (Th17) in OA. Peripheral blood mononuclear cells (PBMCs) from healthy individuals and OA patients were assessed for cytokine expression linked to Treg/Th17 homeostasis.
View Article and Find Full Text PDFJ Clin Invest
September 2024
Pharmacology Program.
Sci Transl Med
August 2024
Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.
Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4FOXP3 regulatory T cells (T) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of T in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!