Objective: Recordings of signal noise and artifacts can be added to clean electrocardiogram (ECG) records to assess the performance of ECG and arrhythmia analysis algorithms in the presence of noise. We present a method to estimate device-specific signal noise and artifacts from ECG records. This method can be applied to obtain noise estimates from healthy subjects on any ECG lead, allowing a simple device-specific recording. The proposed approach is assessed using the MIT-BIH Noise Stress Test Database recordings combined with simulated ECGs.
Methods: The proposed noise-estimation method is based on the subtraction of a time-aligned median beat from a noisy ECG recording. To test our method, electrode motion and muscle artifact noise from MIT-BIH Noise Stress Test database were added to simulated ECG signals at signal-noise ratios (SNR) from -6 to 20 dB. A comparison between noise and estimated noise signal statistical characteristics was made including root-mean squared error and assessment of the power content in three frequency bands (cardiac [0.5-5 Hz], mid [5-25 Hz], and high [25-40 Hz]).
Results: Visual assessment and frequency analysis demonstrate the good quality of noise estimation. Root-mean squared error between noise and estimated noise signals was <0.5 Normalized Units across all SNR levels. Band power error was stable across SNR levels with median percentage error between noise and estimate noise signals of <10% for cardiac and mid frequency bands.
Conclusion: Estimating noise from ECG records is a viable approach to generate noise and artifacts-only signals. These signals are device-specific and easy to collect from healthy subjects without requiring special electrode set-ups. Therefore, they may be suitable for use with annotated ECG databases to assess the robustness of ECG analysis algorithms in the presence of noise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7771512 | PMC |
http://dx.doi.org/10.1016/j.jelectrocard.2018.08.023 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5,Canada.
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method is a semiempirical electronic structure approach that is both computationally efficient and has predictive accuracy for the calculation of electronic excited states and for the simulation of electronic spectroscopies. However, given that the reference space is generated via a selected-CI procedure, a challenge arises in the construction of smooth potential energy surfaces. To address this issue, we treat the local discontinuities that arise as noise within the Gaussian progress regression framework and learn the surfaces by explicitly incorporating and optimizing a white-noise kernel.
View Article and Find Full Text PDFData Brief
February 2025
Symbiosis Institute of Business Management, Symbiosis International (Deemed University), Bengaluru 560100, India.
The CoWIN Twitter Dataset offers a wide-ranging collection of public opinions on India's COVID-19 vaccination platform CoWIN. The raw dataset has 635,000 tweets that mention "cowin," collected over the period of January to December 2021. The dataset was extracted by employing the Twitter Academic API.
View Article and Find Full Text PDFAcross the scientific realm, we find ourselves subtracting or dividing stochastic signals. For instance, consider a stochastic realization, $x$, generated from the addition or multiplication of two stochastic signals $a$ and $b$, namely $x=a+b$ or $x = ab$. For the $x=a+b$ example, $a$ can be fluorescence background and $b$ the signal of interest whose statistics are to be learned from the measured $x$.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Detection and imaging of dual miRNAs based on AND logic gates can improve the accuracy of the early diagnosis of disease. However, a single target may lead to false positive. Hence, this work rationally integrates hyperbranched rolling circle amplification (HRCA) with Cas12a by replacing the PAM sequence with a bubble to sensitively detect and image miRNA-10b and miRNA-21 based on the AND logic gate.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Radiology, College of Medicine, University of Florida, Gainesville, FL.
Purpose: This study evaluated beam quality and radiation dosimetry of a CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO). PVO features miniaturized electronics, a detector cut with microblade technology, and increased filtration in order to increase x-ray detection and reduce image noise.
Methods: We assessed the performance of two similar 320-detector CT scanners: one equipped with PVO and one without.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!