Exploiting ultrasmall nanoparticles as multifunctional nanocarriers labeled with different radionuclides for tumor theranostics has attracted great attention in past few years. Herein, we develop multifunctional nanocarriers based on ultrasmall hyperbranched semiconducting polymer (HSP) nanoparticles for different radionuclides including technetium-99m (Tc), iodine-131 (I), and iodine-125 (I) labeling. SPECT imaging of Tc labeled PEGylated HSP nanoparticles (HSP-PEG) exhibit a prominent accumulation in two-independent tumor models including subcutaneously xenograft and patient derived xenograft model. Impressively, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), as tumor-vascular disrupting agent (VDA), significantly improves the tumor accumulation of I labeled HSP-PEG nanoparticles, further leading to the excellent inhibition of tumor growth after intravenous injection. More importantly, SPECT imaging of I labeled HSP-PEG indicates that ultrasmall HSP-PEG nanoparticles could be slowly excreted from the body of a mouse through urine and feces in 1 week and cause no obvious toxicity to treated mice from blood analysis and histology examinations. Our finding from the different independent tumor models SPECT imaging shows that HSP-PEG nanoparticles may act as multifunctional nanocarriers to deliver different radionuclides for monitoring the in vivo behaviors of nanoparticles and cancer theranostics, which will provide a strategy for cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.8b03514 | DOI Listing |
Langmuir
January 2025
Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.
Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China; Department of Urology, Deyang People's Hospital, Deyang 618099, Sichuan, PR China. Electronic address:
Developing effective nanoplatforms for chemo-immunotherapy to achieve enhanced tumor suppression and systemic antitumor immunity has recently received extensive attention. Herein, we formulated a multifunctional DNA sandwich nanodevice, DSWAC/siPD-L1, based on triangular DNA origami, to implement enhanced cancer chemo-immunotherapy. Taking advantage of the tumor-targeting ability of the AS1411 aptamer, DSWAC/siPD-L1 efficiently delivered doxorubicin (DOX), CpG, and siPD-L1 into tumor cells.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Noncommunicable Disease Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Animal and Plant Biology, Londrina State University, Londrina 86057-970, PR, Brazil.
Nitric oxide (NO) is a multifunctional signaling molecule in plants, playing key roles in germination, microbial symbiosis, and nodule formation. However, its instability requires innovative approaches, such as using nanoencapsulated NO donors, to prolong its effects. This study evaluated the impact of treating soybean () seeds with the NO donor S-nitrosoglutathione (GSNO), encapsulated in polymeric nanoparticles, on the germination, nodulation, and plant growth.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!