Agri-food wastewaters are characterized by high contents of hardly biodegradable organics and large amounts of inorganics especially nitrogen and phosphorus. The present work investigates the efficiency of two electrochemical treatment processes, namely electrochemical oxidation/reduction (EOR), electrocoagulation (EC) and their combination for the treatment of two types of effluents collected from poultry slaughterhouse (SHWW) and dairy (DWW) industries. The optimization of these treatment systems in terms of pollutant performance removal and energy cost were carried out. The EOR treatment was assessed on a bipolar cell with Boron-Doped Diamond (BDD) supported on silicon electrodes. While, the EC treatment was performed on a reactor containing mild steel electrodes with parallel configuration. The simultaneous removal efficiencies of the organic matter in term of the chemical oxygen demand (COD), nitrates, ammonium/ammonia and phosphates, as well as the electric energy consumption (EEC), were evaluated for the different electrochemical scenarios. Results indicated that the EOR treatment shows the highest removal efficiencies of COD, nitrates and ammonia from the two studied wastewaters. While, the phosphates were removed only by the EC process. On the other hand, the EC process shows a relatively low cost in term of EEC (0.01 kWh/g COD), which is about 13 times lower than the one consumed during the EOR process. The combination of the two processes leads to the improvement of the removal rate of all coexistent pollutants when the EC technology was used as a pre-treatment step. While, this coupling mode has the highest EEC. However, when the EOR process was used before the EC one, the removal rates of COD and nitrates were globally similar to the EOR process alone with a relatively low EEC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.08.023 | DOI Listing |
Environ Technol
January 2025
Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.
The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environment Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166 Rosenau, Campus Box # 7431, NC 27599, Chapel Hill, North Carolina, USA. Electronic address:
Greywater, originating from kitchen sinks and toilets, constitutes 75-80 % of the domestic wastewater produced in homes and can be reclaimed for non-potable uses. This study synthesized novel sludge-derived aluminosilicates and alginate-polyethyleneimine (PEI) biochar composites. The aluminosilicates offer a sustainable approach to sludge management, while alginate-polyethyleneimine presents a green biochar modification approach.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Crop Science Discipline, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
Effective microorganisms pose a great potential in wastewater treatment. In the present study, effective microorganisms' formulations were developed using different organic substrates that support the growth of more beneficial microorganisms for sewage treatment. Based on the metagenomic analysis and biochemical profile information, the fish waste-based effective microorganisms' formulation was identified as the effective formulation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
Invasive alien plants pose a great threat to local plants and ecosystems. How to effectively alleviate this hazard is an unresolved issue. This study explored the carbon release characteristics of an invasive plant Spartina alterniflora and evaluated the ability of nitrogen removal from shrimp culture wastewater through constructing seawater wetland.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!