The microenvironment of lymphoid organs can aid healthy immune function through provision of both structural and molecular support. In mice, fibroblastic reticular cells (FRCs) create an essential T-cell support structure within lymph nodes, while human FRCs are largely unstudied. Here, we show that FRCs create a regulatory checkpoint in human peripheral T-cell activation through 4 mechanisms simultaneously utilised. Human tonsil and lymph node-derived FRCs constrained the proliferation of both naïve and pre-activated T cells, skewing their differentiation away from a central memory T-cell phenotype. FRCs acted unilaterally without requiring T-cell feedback, imposing suppression via indoleamine-2,3-dioxygenase, adenosine 2A Receptor, prostaglandin E2, and transforming growth factor beta receptor (TGFβR). Each mechanistic pathway was druggable, and a cocktail of inhibitors, targeting all 4 mechanisms, entirely reversed the suppressive effect of FRCs. T cells were not permanently anergised by FRCs, and studies using chimeric antigen receptor (CAR) T cells showed that immunotherapeutic T cells retained effector functions in the presence of FRCs. Since mice were not suitable as a proof-of-concept model, we instead developed a novel human tissue-based in situ assay. Human T cells stimulated using standard methods within fresh tonsil slices did not proliferate except in the presence of inhibitors described above. Collectively, we define a 4-part molecular mechanism by which FRCs regulate the T-cell response to strongly activating events in secondary lymphoid organs while permitting activated and CAR T cells to utilise effector functions. Our results define 4 feasible strategies, used alone or in combinations, to boost primary T-cell responses to infection or cancer by pharmacologically targeting FRCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122729PMC
http://dx.doi.org/10.1371/journal.pbio.2005046DOI Listing

Publication Analysis

Top Keywords

frcs
10
t-cell activation
8
lymphoid organs
8
frcs create
8
car cells
8
effector functions
8
t-cell
7
cells
7
human
6
human lymph
4

Similar Publications

In situ self-cleaning removal of emerging organic contaminants with covalent organic framework armed with arylbiguanide.

J Hazard Mater

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China. Electronic address:

An in situ self-cleaning covalent organic framework featuring arylbiguanide arms (Aryl-BIG-COF) was first developed to remove emerging organic pollutants such as propranolol (PRO) from water. The main breakthroughs addressed the scarcity of functional active sites, the impracticality of ex situ regeneration, and the rapid recombination of electronhole pairs in the application of COFs. Owing to the directional capture ability and electronic structure regulation of the arylbiguanide arms, the adsorption capacity and photocatalytic degradation rate of the newly synthesized COF increased by nearly four and seven times, respectively.

View Article and Find Full Text PDF

The practical application of polyethylene glycol (PEG) phase change materials (PCMs) necessitates exceptional shape stability, rapid thermal responsiveness, and a substantial thermal storage capacity. The present study focuses on the fabrication of a highly robust cellulose nanofibril (CNF) based aerogel with an ordered structure, serving as a three-dimensional (3D) scaffold for PEG to effectively prevent any potential leakage. Additionally, hydroxyl and amino functional groups are introduced to functionalize boron nitride nanosheets (BNNS-g), which are incorporated into the aerogel to enhance its thermal conductivity.

View Article and Find Full Text PDF

Background: Long-term durability of a restoration relies on the marginal integrity and its ability to withstand the occlusal forces. Fiber-reinforced composites (FRCs) exhibited superior properties in terms of fracture toughness, flexural strength, and wear resistance.

Aim: The aim of this study was to assess and compare marginal adaptation and microtensile bond strength (µTBS) of posterior FRCs comparing with a condensable composite.

View Article and Find Full Text PDF

Background/aim: Chronic obstructive pulmonary disease (COPD) is often complicated by sarcopenia, a condition of reduced muscle mass and function that adversely affects quality of life, lung function, and exacerbation rates. Ultrasonography could be an effective tool for detecting sarcopenia, notably by assessing diaphragmatic function, which may indicate muscle health in COPD patients. This study aims to evaluate the effectiveness of diaphragmatic ultrasound in detecting sarcopenia among COPD patients.

View Article and Find Full Text PDF

Importance: Among older adults with ischemic heart disease, participation in traditional ambulatory cardiac rehabilitation (CR) remains low. While mobile health CR (mHealth-CR) provides a novel opportunity to deliver care, age-specific impairments to technology use may limit uptake, and efficacy data are currently lacking.

Objective: To test whether mHealth-CR improves functional capacity in older adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!