Energy Decomposition Analysis for Excimers Using Absolutely Localized Molecular Orbitals within Time-Dependent Density Functional Theory and Configuration Interaction with Single Excitations.

J Chem Theory Comput

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley, Berkeley , California 94720 , United States.

Published: October 2018

We present an improved energy decomposition analysis (EDA) scheme for understanding intermolecular interactions in delocalized excited states, especially in excimers. In the EDA procedure, excited states are treated with linear response theory such as configuration interaction singles (CIS) or time-dependent density functional theory (TDDFT), and absolutely localized molecular orbitals (ALMOs) are used to define the intermediate (frozen, excitonic coupling, and polarized) states. The intermolecular interaction energy is thereby separated into frozen, excitonic splitting, polarization, and charge transfer contributions. The excitonic splitting term describes the delocalization effect as two or more degenerate local excitations coupled with each other, which is often an important binding force in excimers. A maximum overlap state-tracking procedure is introduced to connect the initial fragment excitations to the constrained intermediate states and finally to the unconstrained delocalized states of the complex. The EDA scheme is applied to several excimer systems, including the He and Ne noble gas excimers, the doubly hydrogen-bonded 2-pyridone dimer, and the aromatic benzene and perylene excimers. We are able to gain some useful insights into the role each term is playing in the formation of these excimers, and the resulting method may also be useful for understanding a range of other complexes in excited states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.8b00537DOI Listing

Publication Analysis

Top Keywords

excited states
12
energy decomposition
8
decomposition analysis
8
absolutely localized
8
localized molecular
8
molecular orbitals
8
time-dependent density
8
density functional
8
functional theory
8
theory configuration
8

Similar Publications

The quantum transition state framework was developed to calculate the reaction path-resolved scattering matrix for atom-diatom reactions in hyperspherical (APH) coordinates. This approach allows for simply and directly calculating the reaction path-resolved scattering matrix, especially when the encircling reaction path is negligible. It could be used to determine the reactivities of specific pathways in a chemical reaction, providing insights into phenomena such as geometric phase effects.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop ground-truth histology about contributors to variable fundus autofluorescence (FAF) signal and thus inform patient selection for treating geographic atrophy (GA) in age-related macular degeneration (AMD).

Methods: One woman with bilateral multifocal GA, foveal sparing, and thick choroids underwent 535 to 580 nm excitation FAF in 6 clinic visits (11 to 6 years before death). The left eye was preserved 5 hours after death.

View Article and Find Full Text PDF

Multifunctional applications enabled by tunable multi-emission and ultra-broadband VIS-NIR luminescence energy transfer in Sn/Mn-doped lead-free Zn-based metal halides.

Mater Horiz

January 2025

School of Physical Science and Technology, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Metal halides are widely applied in solid-state lighting (SSL), optoelectronic devices, information encryption, and near-infrared (NIR) detection due to their superior photoelectric properties and tunable emission. However, single-component phosphors that can be efficiently excited by light-emitting diode (LED) chips and cover both the visible (VIS) and NIR emission regions are still very rare. To address this issue, (TPA)ZnBr:Sn/Mn (TPA = [(CHCHCH)N]) phosphors were synthesized by using the solvent evaporation method.

View Article and Find Full Text PDF

This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.

View Article and Find Full Text PDF

Low-threshold anisotropic polychromatic emission from monodisperse quantum dots.

Natl Sci Rev

February 2025

Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Colloidal quantum dots (QDs) are solution-processable semiconductor nanocrystals with favorable optoelectronic characteristics, one of which is their multi-excitonic behavior that enables broadband polychromatic light generation and amplification from monodisperse QDs. However, the practicality of this has been limited by the difficulty in achieving spatial separation and patterning of different colors as well as the high pumping intensity required to excite the multi-excitonic states. Here, we have addressed these issues by integrating monodisperse QDs in multi-excitonic states into a specially designed cavity, in which the QDs exhibit an anisotropic polychromatic emission (APE) characteristic that allows for tuning the emission from green to red by shifting the observation direction from perpendicular to lateral.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!