Thousand-fold Conductivity Increase in 2D Perovskites by Polydiacetylene Incorporation and Doping.

Angew Chem Int Ed Engl

Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510, Ciudad de México, México.

Published: October 2018

Two-dimensional (2D) organic-inorganic perovskites have rapidly become an attractive alternative to traditional three-dimensional (3D) perovskite solar-cell absorbers owing to their improved stability and processability. Despite their advantages, the insulating nature of the organic cations and diminished light absorption limit their overall performance. Herein, it is demonstrated that the incorporation of conjugated diynes in hybrid 2D perovskites, and subsequent thermal treatment results in the formation of 2D perovskites that incorporate polydiacetylenes in their structure. Furthermore, it is shown that oxygen or iodine doping results in the formation of stable radicals within the material alongside a drastic shift of the band gap from 3.0 to 1.4 eV and in-plane conductivity improvements of up to three orders of magnitude, which lead to record conductivities for 2D halide perovskites (n=1).

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201809028DOI Listing

Publication Analysis

Top Keywords

perovskites
5
thousand-fold conductivity
4
conductivity increase
4
increase perovskites
4
perovskites polydiacetylene
4
polydiacetylene incorporation
4
incorporation doping
4
doping two-dimensional
4
two-dimensional organic-inorganic
4
organic-inorganic perovskites
4

Similar Publications

UV-Resistant Nanostructured Anti-reflective Film for Achieving Efficiency Enhancement of Perovskite Solar Cells and Potential of Fabricating Large-Scale Cu(In, Ga)Se Solar Cells.

ACS Appl Mater Interfaces

January 2025

Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.

Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.

View Article and Find Full Text PDF

Exploring Lysine Incorporation as a Strategy to Mitigate Postsynthetic Halide Exchange in Lead-Halide Hybrid Perovskites.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.

View Article and Find Full Text PDF

Multifunctional Graphdiyne Enables Efficient Perovskite Solar Cells via Anti-Solvent Additive Engineering.

Nanomicro Lett

January 2025

CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.

View Article and Find Full Text PDF

The incorporation of Sb ions into all-inorganic halide lead-free perovskites bestows them with remarkable photoluminescence characteristics, including an extensive color tuning range, elevated photoluminescence quantum yield (PLQY), and reversible color transitions, which hold significant promise for applications in light-emitting diodes, anti-counterfeiting encryption technologies, and photodetectors. Sb ions not only create new optical absorption channels but also can be integrated into these materials as activators or sensitizers to modulate the bandgap and band structure. This review focuses on the optical properties of Sb ion-doped lead-free halide perovskites while examining potential energy transfer pathways across various doping systems.

View Article and Find Full Text PDF

Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!