Background: Cancer is the second leading cause of mortality worldwide after heart diseases, and lung cancer is the topmost cause of all cancer-related deaths in both sexes. Dihydropyrimidinones (DHPMs) are medicinally important class of molecules with diverse pharmacological activities including anticancer activity. The present study focuses on the molecular hybridization of novel Benzopyran with Dihydropyrimidinone and evaluation of the resulting hybrids for cancer cell proliferation, migration and tumor growth.
Methods: We have synthesized a focused library of dihydropyrimidinone benzopyran hybrids (compounds 1-11) by joining the aromatic as well as pyran portions of the benzopyran core with dihydropyrimidinone. All the synthesized hybrid molecules were evaluated for their cytotoxic activities against a panel of four human cancer cell lines of diverse tissue origin, viz: A549 (lung carcinoma), MCF7 (mammary gland adenocarcinoma), HCT-116 (colorectal carcinoma), and PANC-1 (pancreatic duct carcinoma) with the help of MTT cell viability assay. A structure-activity relationship was made on the basis of IC50 values of different hybrids. Effect on cell proliferation was examined through colony formation assay, reactive oxygen species generation and mitochondrial membrane potential studies. Wound healing assays and cell scattering assays were employed to check the effect on cell migration. Western blotting experiments were performed to find out the molecular mechanism of action and anti-tumor studies were carried out to evaluate the in vivo efficacy of the selected lead molecule.
Results: Two types of novel hybrids were synthesized efficiently from benzopyran aldehydes, ethylacetoacetate and urea under heteropolyacid catalysis. Compound 3 was found to be the most potent hybrid among the synthesized compounds with consistent cytotoxic activities against four human cancer cell lines (IC50 values: 0.139 - 2.32 μM). Compound 3 strongly inhibited proliferation abilities of A549 cells in colony formation assay. Compound 3 exerted oxidative stress-mediated mitochondrial dysfunction, in which mitochondrial reactive oxygen species (ROS) generation as a mechanism of its anti-proliferative effects was analysed. Further, the molecule abrogated migration and cell scattering properties of aggressive PANC-1 cells. Mechanistic studies revealed that compound 3 modulated NF-kB expression and its downstream oncogenic proteins involved in cancer cell proliferation and invasion. Finally, compound 3 confirmed its in vivo anti-tumor efficacy; there observed 41.87% tumor growth inhibition at a dose of 30 mg/kg/body weight against a mouse model of Ehrlich solid tumor.
Conclusion: Our study unravels a potential anticancer lead (compound 3) from DHPMs that have opened up new research avenues for the development of promising anticancer therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520618666180903101422 | DOI Listing |
Wounds from gunshots and other explosive devices are a source of loss of substances directly or secondary to a well- conducted debridement. In addition, these types of wounds are by definition contaminated. The major challenge in this context for any surgeon remains coverage.
View Article and Find Full Text PDFJ Kidney Cancer VHL
December 2024
Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.
View Article and Find Full Text PDFFront Immunol
January 2025
Section of Immunology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Background: Maintenance immunosuppression is required for suppression of alloimmunity or allograft rejection. However, continuous use of immunosuppressants may lead to various side effects, necessitating the use of alternative immunosuppressive drugs. The early secreted antigenic target of 6 kDa (ESAT-6) is a virulence factor and immunoregulatory protein of mycobacterium tuberculosis (Mtb), which alters host immunity through dually regulating development or activation of various immune cells.
View Article and Find Full Text PDFFront Immunol
January 2025
The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China.
Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development.
View Article and Find Full Text PDFFront Oncol
January 2025
The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
Introduction: Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!