Rafts are nanoscale ordered domains in biological membranes that are rich in saturated phospholipids. In this study, the influence of chain unsaturation and temperature on oxygen diffusion through lipid membranes is examined using advanced computational modeling. The studied phospholipids with increasing unsaturation are: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The unsaturation correlates with the area per lipid and the order parameter. Oxygen diffusion is found to be faster at higher temperature, and the solubility of oxygen in the membrane with respect to water decreases. Diffusion varies over a larger range across the membrane at 323 K in DPPC than in DOPC, whereas POPC has intermediate diffusivity. Oxygen diffusion in saturated lipids is faster at the membrane center and slower near the head group region than in unsaturated lipids. Oxygen solubility in DPPC is higher than in unsaturated lipids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-91287-5_64 | DOI Listing |
Nano Lett
January 2025
National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India.
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Artificial water channels (AWCs) have emerged as a promising framework for stable water permeation, with water transport rates comparable to aquaporins (3.4-40.3 × 10 HO/channel/s).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
Hafnium (Hf)-based nanoscale metal-organic layers (MOLs) enhance radiotherapeutic effects of tissue-penetrating X-rays via a unique radiotherapy-radiodynamic therapy (RT-RDT) process through efficient generation of hydroxy radical (RT) and singlet oxygen (RDT). However, their radiotherapeutic efficacy is limited by hypoxia in deep-seated tumors and short half-lives of reactive oxygen species (ROS). Herein the conjugation of a nitric oxide (NO) donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), to the Hf secondary building units (SBUs) of Hf-5,5'-di-p-benzoatoporphyrin MOL is reported to afford SNAP/MOL for enhanced cancer radiotherapy.
View Article and Find Full Text PDFIn Vivo
December 2024
College of Biology, Hunan University, Changsha, P.R. China;
Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!