Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session8b0a770r25pks17cbk306hidbmnkq7uf): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Bone-specific radiotracers are known to accumulate in breast lesions. Tc-99m diphosphonates have been widely studied in differentiating breast lesions. In this retrospective study, we aimed to assess the uptake of the bone-specific PET radiotracer, F-18 fluoride (NaF), in primary breast cancers to determine its sensitivity and to identify any differences in NaF uptake between calcified and non-calcified tumors, histological subtypes, and patients with or without axillary lymphadenopathy.
Methods: NaF positron emission tomography/computed tomography (PET/CT) images of 69 newly diagnosed breast cancer patients were reviewed. F-18 fluoride uptake as maximum standardized uptake value (NaF SUVmax) was measured in the primary tumor, enlarged axillary lymph nodes and contralateral normal/non-tumoral breast tissue. Low-dose CT images were reviewed to locate the primary tumor and grossly assess its calcification and check for ipsilateral axillary lymphadenopathy. Whole body NaF PET/CT images were reviewed to search for bone metastases. Eighteen patients also underwent F-18 fluorodeoxyglucose (FDG) PET/CT study.
Results: The primary breast tumor was clearly seen as focal or diffuse uptake on NaF PET images in 27 of 69 patients (39%) (mean NaF SUVmax: 2.0 ± 1.0). In the rest, there was only mild bilateral diffuse breast uptake. When analyzing images per histological subtype (42 patients, 43 tumors), 14 of 31 invasive ductal carcinomas (IDC) (45%) and 3 of 4 ductal carcinoma in situ (DCIS) were visible on PET. Five invasive lobular carcinomas, 2 invasive mammary carcinomas, and 1 mucinous carcinoma were not visible on PET. Mean NaF SUVmax of contralateral normal/non-tumoral breast tissue was 1.0 ± 0.4. There was no significant difference in mean NaF SUVmax of primary tumor in cases with and without calcification or with and without axillary lymphadenopathy (p 0.892 and 0.957). There was no correlation between NaF SUVmax and FDG SUVmax values of the primary tumors (r 0.072, p 0.797, Pearson correlation).
Conclusion: NaF PET has relatively low sensitivity in detecting breast cancer. However, abnormal breast uptake on NaF PET requires further evaluation. F-18 fluoride uptake in the primary breast tumor does not seem to be correlated with axillary lymphadenopathy (metastasis potential), gross tumor calcification or metabolic activity of the tumor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12149-018-1294-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!