Functional metabolomics approach reveals the reduced biosynthesis of fatty acids and TCA cycle is required for pectinase activity in Bacillus licheniformis.

J Ind Microbiol Biotechnol

Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Technology, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou, 350108, Fujian, China.

Published: November 2018

Increase of pectinase activity is especially important in fermentation industry. Understanding of the metabolic mechanisms can find metabolic modulation approach to promote high yield of pectinase. Higher activity of pectinase was detected in DY1 than DY2, two strains of Bacillus licheniformis. GC-MS-based metabolomics identified differential metabolome of DY2 compared with DY1, characterizing the increased TCA cycle and biosynthesis of fatty acids. Elevated activity of pyruvate dehydrogenase (PDH), α-ketoglutaric dehydrogenase (KGDH) and succinate dehydrogenase (SDH) showed global elevation of carbon metabolism, which is consistent with the result that lowers glucose in DY2 than DY1. Inhibitors malonate, furfural and triclosan, of PDH, SDH and biosynthesis of fatty acids, promoted pectinase activity, where triclosan increased pectinase activity by 179%. These results indicate that functional metabolomics is an effective approach to understand metabolic mechanisms of fermentation production and provides clues to develop new methods for changing bacterial physiology and production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-018-2071-zDOI Listing

Publication Analysis

Top Keywords

pectinase activity
16
biosynthesis fatty
12
fatty acids
12
functional metabolomics
8
tca cycle
8
bacillus licheniformis
8
metabolic mechanisms
8
pectinase
6
activity
6
metabolomics approach
4

Similar Publications

Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.

View Article and Find Full Text PDF

Efficacy of SC5 Fermentation Filtrate in Inhibiting the Growth and Development in Sunflower.

Int J Mol Sci

December 2024

Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.

is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of metabolites in inhibiting growth and development and controlling sunflower sclerotinia rot disease.

View Article and Find Full Text PDF

is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.

View Article and Find Full Text PDF

Free pectinase is commonly employed as a biocatalyst in wine clarification; however, its removal, recovery, and reuse are not feasible. To address these limitations, this study focuses on the immobilization of a commercial pectinolytic preparation (Pec) onto highly porous polymer microparticles (MPs). Seven microparticulate polyamide (PA) supports, namely PA4, PA6, PA12 (with and without magnetic properties), and the copolymeric PA612 MP, were synthesized through activated anionic ring-opening polymerization of various lactams.

View Article and Find Full Text PDF

Whether the calyx tube of the Korla fragrant pear falls off seriously affects the fruit quality. 'Xinnonglinxiang' is a mutant variety of the Korla fragrant pear, which has a high calyx removal rate under natural conditions, and calyx tube fall seriously affects the fruit quality. The mechanism behind the high calyx removal rate of 'Xinnonglinxiang' remains unclear; thus, Korla fragrant pear (PT) and 'Xinnonglinxiang' (YB) with different degrees of calyx abscission were used as examples and the abscission areas of calyx tubes were collected in the early (21 April), middle (23 April), and late (25 April) shedding stages to explore the regulatory mechanism behind the abscission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!