Systemic sclerosis (SSc) is an autoimmune disease with fibrosis of the skin and internal organs and vascular alterations. Dysregulations in the oxidant/antioxidant balance are known to be a major factor in the pathogenesis of the disease. Indeed, reactive oxygen species (ROS) trigger neoepitopes leading to a breach of immune tolerance and autoimmune responses, activate fibroblasts to proliferate and to produce excess of type I collagen. ROS also alter endothelial cells leading to vascular dysfunction. Glutathione (GSH) is the most potent antioxidant system in eukaryotic cells. Numerous studies have reported a defect in GSH in SSc animal models and humans, but the origin of this defect remains unknown. The transcription factor NRF2 is a key player in the antioxidant defense, as it can induce the transcription of antioxidant and cytoprotective genes, including GSH, through its interaction with the antioxidant response elements. In this work, we investigated whether NRF2 could be implicated in the pathogenesis of SSc, and if this pathway could represent a new therapeutic target in this orphan disease with no curative medicine. Skin biopsies from 11 patients and 10 controls were harvested, and skin fibroblasts were extracted. Experimental SSc was induced both in BALB/c and in mice by daily intradermal injections of hypochloric acid. In addition, diseased BALB/c mice were treated with an agonist, dimethyl fumarate, or placebo. A drop in and target genes mRNA levels was observed in skin fibroblasts of SSc patients compared to controls. Moreover, the pathway is also downregulated in skins and lungs of SSc mice. In addition, we observed that mice have a more severe form of SSc with increased fibrosis and inflammation compared to wild-type SSc mice. Diseased mice treated with the agonist dimethyl fumarate (DMF) exhibited reduced fibrosis and immune activation compared to untreated mice. The treatment of skin fibroblasts from SSc mice with DMF restores GSH intracellular content, decreases ROS production and cell proliferation. These results suggest that the pathway is highly dysregulated in human and SSc mice with deleterious consequences on fibrosis and inflammation and that Nrf2 modulation represents a therapeutic target in SSc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109691PMC
http://dx.doi.org/10.3389/fimmu.2018.01896DOI Listing

Publication Analysis

Top Keywords

ssc mice
16
skin fibroblasts
12
ssc
11
mice
9
therapeutic target
8
balb/c mice
8
mice treated
8
treated agonist
8
agonist dimethyl
8
dimethyl fumarate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!