https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=30177685&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 301776852019012420240330
2041-1723912018Sep03Nature communicationsNat CommunThe mitotic spindle is chiral due to torques within microtubule bundles.35713571357110.1038/s41467-018-06005-7Mitosis relies on forces generated in the spindle, a micro-machine composed of microtubules and associated proteins. Forces are required for the congression of chromosomes to the metaphase plate and their separation in anaphase. However, besides forces, torques may exist in the spindle, yet they have not been investigated. Here we show that the spindle is chiral. Chirality is evident from the finding that microtubule bundles in human spindles follow a left-handed helical path, which cannot be explained by forces but rather by torques. Kinesin-5 (Kif11/Eg5) inactivation abolishes spindle chirality. Our theoretical model predicts that bending and twisting moments may generate curved shapes of bundles. We found that bundles turn by about -2 deg µm-1 around the spindle axis, which we explain by a twisting moment of roughly -10 pNµm. We conclude that torques, in addition to forces, exist in the spindle and determine its chiral architecture.NovakMajaMDepartment of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.PolakBrunoBDivision of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.SimunićJurajJ0000-0002-3058-7311Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.BobanZvonimirZDepartment of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.KuzmićBarbaraBDivision of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.ThomaeAndreas WAWWalter Brendel Centre of Experimental Medicine and Core Facility Bioimaging at the Biomedical Center, University of Munich, 82152, Planegg-Martinsried, Germany.TolićIva MIM0000-0003-1305-7922Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia. tolic@irb.hr.PavinNenadN0000-0002-4313-1081Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia. npavin@phy.hr.engJournal ArticleResearch Support, Non-U.S. Gov't20180903
EnglandNat Commun1015285552041-17230KIF11 protein, humanEC 3.6.4.4KinesinsIMCell Line, TumorHeLa CellsHumansKinesinsgeneticsKinetochoresphysiologyultrastructureMicroscopy, ConfocalMicrotubulesphysiologyultrastructureModels, TheoreticalSpindle ApparatusgeneticsphysiologyultrastructureTorqueThe authors declare no competing interests.
20182152018862018956020189560201912560201893epublish30177685PMC612095710.1038/s41467-018-06005-710.1038/s41467-018-06005-7Prosser SL, Pelletier L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 2017;18:187–201. doi: 10.1038/nrm.2016.162.10.1038/nrm.2016.16228174430McIntosh JR, Molodtsov MI, Ataullakhanov FI. Biophysics of mitosis. Q. Rev. Biophys. 2012;45:147–207. doi: 10.1017/S0033583512000017.10.1017/S0033583512000017PMC443317122321376Musacchio, A. & Desai, A. A molecular view of kinetochore assembly and function. Biology(Basel)6, 10.3390/biology6010005 (2017).PMC537199828125021Pavin N, Tolić IM. Self-organization and forces in the mitotic spindle. Annu. Rev. Biophys. 2016;45:279–298. doi: 10.1146/annurev-biophys-062215-010934.10.1146/annurev-biophys-062215-01093427145873Maiato, H., Gomes, A. M., Sousa, F. & Barisic, M. Mechanisms of chromosome congression during mitosis. Biology(Basel)6, 10.3390/biology6010013 (2017).PMC537200628218637Asbury, C. L. Anaphase A: disassembling microtubules move chromosomes toward spindle poles. Biology(Basel)6, 10.3390/biology6010015 (2017).PMC537200828218660Mastronarde DN, McDonald KL, Ding R, McIntosh JR. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 1993;123:1475–1489. doi: 10.1083/jcb.123.6.1475.10.1083/jcb.123.6.1475PMC22908728253845Kajtez J, et al. Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores. Nat. Commun. 2016;7:10298. doi: 10.1038/ncomms10298.10.1038/ncomms10298PMC472844626728792Polak B, Risteski P, Lesjak S, Tolic IM. PRC1-labeled microtubule bundles and kinetochore pairs show one-to-one association in metaphase. EMBO Rep. 2017;18:217–230. doi: 10.15252/embr.201642650.10.15252/embr.201642650PMC528635928028032Vukusic K, et al. Microtubule sliding within the bridging fiber pushes kinetochore fibers apart to segregate chromosomes. Dev. Cell. 2017;43:11–23. doi: 10.1016/j.devcel.2017.09.010.10.1016/j.devcel.2017.09.010PMC563716929017027Simunic J, Tolic IM. Mitotic spindle assembly: building the bridge between sister K-fibers. Trends Biochem. Sci. 2016;41:824–833. doi: 10.1016/j.tibs.2016.07.004.10.1016/j.tibs.2016.07.00427469524Tolic IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. Eur. Biophys. J. 2018;47:191–203. doi: 10.1007/s00249-017-1244-4.10.1007/s00249-017-1244-4PMC584564928725997Scholey, J. M., Civelekoglu-Scholey, G. & Brust-Mascher, I. Anaphase B. Biology(Basel)5, 10.3390/biology5040051 (2016).PMC519243127941648Mogilner A, Wollman R, Civelekoglu-Scholey G, Scholey J. Modeling mitosis. Trends Cell Biol. 2006;16:88–96. doi: 10.1016/j.tcb.2005.12.007.10.1016/j.tcb.2005.12.00716406522Gardner MK, Odde DJ. Modeling of chromosome motility during mitosis. Curr. Opin. Cell Biol. 2006;18:639–647. doi: 10.1016/j.ceb.2006.10.006.10.1016/j.ceb.2006.10.00617046231Joglekar AP, Hunt AJ. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys. J. 2002;83:42–58. doi: 10.1016/S0006-3495(02)75148-5.10.1016/S0006-3495(02)75148-5PMC130212612080099Civelekoglu-Scholey G, Sharp DJ, Mogilner A, Scholey JM. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 2006;90:3966–3982. doi: 10.1529/biophysj.105.078691.10.1529/biophysj.105.078691PMC145950616533843Rubinstein B, Larripa K, Sommi P, Mogilner A. The elasticity of motor-microtubule bundles and shape of the mitotic spindle. Phys. Biol. 2009;6:016005. doi: 10.1088/1478-3975/6/1/016005.10.1088/1478-3975/6/1/016005PMC272372619193975Dumont S, Mitchison TJ. Force and length in the mitotic spindle. Curr. Biol. 2009;19:R749–R761. doi: 10.1016/j.cub.2009.07.028.10.1016/j.cub.2009.07.028PMC279183019906577Brugues J, Needleman D. Physical basis of spindle self-organization. Proc. Natl. Acad. Sci. USA. 2014;111:18496–18500. doi: 10.1073/pnas.1409404111.10.1073/pnas.1409404111PMC428457025468965Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature. 2000;407:41–47. doi: 10.1038/35024000.10.1038/3502400010993066Walker RA, Salmon ED, Endow SA. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature. 1990;347:780–782. doi: 10.1038/347780a0.10.1038/347780a02146510Yajima J, Mizutani K, Nishizaka T. A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat. Struct. Mol. Biol. 2008;15:1119–1121. doi: 10.1038/nsmb.1491.10.1038/nsmb.149118806799Bormuth V, et al. The highly processive kinesin-8, Kip3, switches microtubule protofilaments with a bias toward the left. Biophys. J. 2012;103:L4–L6. doi: 10.1016/j.bpj.2012.05.024.10.1016/j.bpj.2012.05.024PMC338821722828351Can S, Dewitt MA, Yildiz A. Bidirectional helical motility of cytoplasmic dynein around microtubules. eLife. 2014;3:e03205. doi: 10.7554/eLife.03205.10.7554/eLife.03205PMC413727425069614Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780–782. doi: 10.1364/OL.19.000780.10.1364/OL.19.00078019844443Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 1999;24:954–956. doi: 10.1364/OL.24.000954.10.1364/OL.24.00095418073907Jiang W, et al. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol. Cell. 1998;2:877–885. doi: 10.1016/S1097-2765(00)80302-0.10.1016/S1097-2765(00)80302-09885575Mollinari C, et al. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 2002;157:1175–1186. doi: 10.1083/jcb.200111052.10.1083/jcb.200111052PMC217356412082078DeBonis S, et al. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol. Cancer Ther. 2004;3:1079–1090.15367702Skoufias DA, et al. S-trityl-l-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J. Biol. Chem. 2006;281:17559–17569. doi: 10.1074/jbc.M511735200.10.1074/jbc.M51173520016507573Spector I, Shochet NR, Kashman Y, Groweiss A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983;219:493–495. doi: 10.1126/science.6681676.10.1126/science.66816766681676Thery M, et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 2005;7:947–953. doi: 10.1038/ncb1307.10.1038/ncb130716179950Woodard GE, et al. Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell. Biol. 2010;30:3519–3530. doi: 10.1128/MCB.00394-10.10.1128/MCB.00394-10PMC289754020479129O’Connell CB, Wang YL. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell. 2000;11:1765–1774. doi: 10.1091/mbc.11.5.1765.10.1091/mbc.11.5.1765PMC1488210793150Gittes F, Mickey B, Nettleton J, Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 1993;120:923–934. doi: 10.1083/jcb.120.4.923.10.1083/jcb.120.4.923PMC22000758432732Landau, L. D. & Lifshitz, E. M. TheoryofElasticity 1st edn, Vol. 7, 82–85 (Pergamon Press, New York, 1959).Inaki, M., Liu, J. & Matsuno, K. Cell chirality: its origin and roles in left-right asymmetric development. Philos.Trans.R.Soc.Lond.Ser.B371, 10.1098/rstb.2015.0403 (2016).PMC510450327821533Winey M, et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 1995;129:1601–1615. doi: 10.1083/jcb.129.6.1601.10.1083/jcb.129.6.1601PMC22911747790357Ding R, McDonald KL, McIntosh JR. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomycespombe. J. Cell Biol. 1993;120:141–151. doi: 10.1083/jcb.120.1.141.10.1083/jcb.120.1.141PMC21194898416984Nixon FM, et al. Microtubule organization within mitotic spindles revealed by serial block face scanning electron microscopy and image analysis. J. Cell Sci. 2017;130:1845–1855. doi: 10.1242/jcs.203877.10.1242/jcs.203877PMC617328628389579Redemann S, et al. C.elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nat. Commun. 2017;8:15288. doi: 10.1038/ncomms15288.10.1038/ncomms15288PMC543726928492281Iwakiri Y, Kamakura S, Hayase J, Sumimoto H. Interaction of NuMA protein with the kinesin Eg5: its possible role in bipolar spindle assembly and chromosome alignment. Biochem. J. 2013;451:195–204. doi: 10.1042/BJ20121447.10.1042/BJ2012144723368718Erickson HP. Microtubule surface lattice and subunit structure and observations on reassembly. J. Cell Biol. 1974;60:153–167. doi: 10.1083/jcb.60.1.153.10.1083/jcb.60.1.153PMC21091504855592Feng Y, Mitran S. Data-driven reduced-order model of microtubule mechanics. Cytoskeleton (Hoboken) 2018;75:45–60. doi: 10.1002/cm.21419.10.1002/cm.2141929125701Ramaiya A, Roy B, Bugiel M, Schaffer E. Kinesin rotates unidirectionally and generates torque while walking on microtubules. Proc. Natl. Acad. Sci. USA. 2017;114:10894–10899. doi: 10.1073/pnas.1706985114.10.1073/pnas.1706985114PMC564269628973906Hilfinger A, Julicher F. The chirality of ciliary beats. Phys. Biol. 2008;5:016003. doi: 10.1088/1478-3975/5/1/016003.10.1088/1478-3975/5/1/01600318356578Sartori P, Geyer VF, Howard J, Julicher F. Curvature regulation of the ciliary beat through axonemal twist. Phys. Rev. E. 2016;94:042426. doi: 10.1103/PhysRevE.94.042426.10.1103/PhysRevE.94.04242627841522Su TW, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. USA. 2012;109:16018–16022. doi: 10.1073/pnas.1212506109.10.1073/pnas.1212506109PMC347956622988076Friedrich BM, Riedel-Kruse IH, Howard J, Julicher F. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Exp. Biol. 2010;213:1226–1234. doi: 10.1242/jeb.039800.10.1242/jeb.03980020348333Mitchison TJ. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 1989;109:637–652. doi: 10.1083/jcb.109.2.637.10.1083/jcb.109.2.637PMC21157012760109Magidson V, et al. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell. 2011;146:555–567. doi: 10.1016/j.cell.2011.07.012.10.1016/j.cell.2011.07.012PMC329119821854981Lukinavicius G, et al. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat. Commun. 2015;6:8497. doi: 10.1038/ncomms9497.10.1038/ncomms9497PMC460074026423723Lukinavicius G, et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods. 2014;11:731–733. doi: 10.1038/nmeth.2972.10.1038/nmeth.297224859753Gayek AS, Ohi R. Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol. Biol. Cell. 2014;25:2051–2060. doi: 10.1091/mbc.e14-03-0785.10.1091/mbc.e14-03-0785PMC407257824807901Tanenbaum ME, et al. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr. Biol. 2009;19:1703–1711. doi: 10.1016/j.cub.2009.08.027.10.1016/j.cub.2009.08.02719818618Cai S, et al. Effect of latrunculin-A on morphology and actin-associated adhesions of cultured human trabecular meshwork cells. Mol. Vis. 2000;6:132–143.10930474Chretien D, Buendia B, Fuller SD, Karsenti E. Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 1997;120:117–133. doi: 10.1006/jsbi.1997.3928.10.1006/jsbi.1997.39289417977Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy. Nat. Methods. 2018;15:173–182. doi: 10.1038/nmeth.4593.10.1038/nmeth.459329377014Blom H, Widengren J. Stimulated emission depletion microscopy. Chem. Rev. 2017;117:7377–7427. doi: 10.1021/acs.chemrev.6b00653.10.1021/acs.chemrev.6b0065328262022Coelho M, Maghelli N, Tolic-Norrelykke IM. Single-molecule imaging in vivo: the dancing building blocks of the cell. Integr. Biol. (Camb.) 2013;5:748–758. doi: 10.1039/c3ib40018b.10.1039/c3ib40018b23525260Buda R, Vukusic K, Tolic IM. Dissection and characterization of microtubule bundles in the mitotic spindle using femtosecond laser ablation. Methods Cell Biol. 2017;139:81–101. doi: 10.1016/bs.mcb.2016.11.007.10.1016/bs.mcb.2016.11.00728215341Wendell KL, Wilson L, Jordan MA. Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes. J. Cell Sci. 1993;104:261–274.8505360McEwen BF, et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell. 2001;12:2776–2789. doi: 10.1091/mbc.12.9.2776.10.1091/mbc.12.9.2776PMC5971211553716Mogilner A, Rubinstein B. The physics of filopodial protrusion. Biophys. J. 2005;89:782–795. doi: 10.1529/biophysj.104.056515.10.1529/biophysj.104.056515PMC136662915879474Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019.10.1038/nmeth.2019PMC385584422743772R Core Team. R:ALanguageandEnvironmentforStatisticalComputing (R Foundation for Statistical Computing, Vienna, Austria, 2016).Lancaster OM, et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell. 2013;25:270–283. doi: 10.1016/j.devcel.2013.03.014.10.1016/j.devcel.2013.03.01423623611Hell SW, Reiner G, Cremer C, Stelzer EHK. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 1993;169:391–405. doi: 10.1111/j.1365-2818.1993.tb03315.x.10.1111/j.1365-2818.1993.tb03315.xBesseling TH, Jose J, Van Blaaderen A. Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index. J. Microsc. 2015;257:142–150. doi: 10.1111/jmi.12194.10.1111/jmi.12194PMC438364825444358