AI Article Synopsis

  • The Palaeocene-Eocene Thermal Maximum (PETM) is a significant geological event that mirrors today's rapid carbon emissions, leading to major changes like ocean warming, deoxygenation, and acidification.
  • Researchers analyzed new and existing data on ocean chemistry and pH using boron proxies to understand the extent of surface ocean acidification during this period.
  • Their findings show a global uniform reduction in ocean carbonate levels during the PETM, linking high atmospheric CO2 levels to widespread acidification across various ocean regions.

Article Abstract

Geologically abrupt carbon perturbations such as the Palaeocene-Eocene Thermal Maximum (PETM, approx. 56 Ma) are the closest geological points of comparison to current anthropogenic carbon emissions. Associated with the rapid carbon release during this event are profound environmental changes in the oceans including warming, deoxygenation and acidification. To evaluate the global extent of surface ocean acidification during the PETM, we present a compilation of new and published surface ocean carbonate chemistry and pH reconstructions from various palaeoceanographic settings. We use boron to calcium ratios (B/Ca) and boron isotopes (δB) in surface- and thermocline-dwelling planktonic foraminifera to reconstruct ocean carbonate chemistry and pH. Our records exhibit a B/Ca reduction of 30-40% and a δB decline of 1.0-1.2‰ coeval with the carbon isotope excursion. The tight coupling between boron proxies and carbon isotope records is consistent with the interpretation that oceanic absorption of the carbon released at the onset of the PETM resulted in widespread surface ocean acidification. The remarkable similarity among records from different ocean regions suggests that the degree of ocean carbonate change was globally near uniform. We attribute the global extent of surface ocean acidification to elevated atmospheric carbon dioxide levels during the main phase of the PETM.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127385PMC
http://dx.doi.org/10.1098/rsta.2017.0072DOI Listing

Publication Analysis

Top Keywords

surface ocean
20
ocean acidification
16
ocean carbonate
12
ocean
8
palaeocene-eocene thermal
8
thermal maximum
8
global extent
8
extent surface
8
carbonate chemistry
8
carbon isotope
8

Similar Publications

Measuring the heart rate of sea turtles is important for understanding their physiological adaptations to the environment. Non-invasive methods to measure the electrocardiogram (ECG) of sea turtles have been developed by attaching electrodes to their carapace. However, this method has only been applicable to sea turtles with sparse keratin on their shell surfaces, such as loggerhead turtles, and it is difficult to detect heartbeats in sea turtles with dense keratinous scutes, including green sea turtles.

View Article and Find Full Text PDF

A study on the production of extracellular vesicles derived from novel immortalized human placental mesenchymal stromal cells.

Sci Rep

January 2025

International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai, 201306, China.

Extracellular vesicles (EVs) are not only involved in cell-to-cell communications but have other functions as "garbage bags", as bringing nutrients to cells, and as inducing mineral during bone formation and ectopic calcification. These minuscule entities significantly contribute to the regulation of bodily functions. However, the clinical application of EVs faces challenges due to limited production yield and targeting efficiency.

View Article and Find Full Text PDF

Soliton solutions of the (2 + 1)-dimensional Jaulent-Miodek evolution equation via effective analytical techniques.

Sci Rep

January 2025

Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.

In this study, we investigate the [Formula: see text]-D Jaulent-Miodek (JM) equation, which is significant due to its energy-based Schrödinger potential and applications in fields such as optics, soliton theory, signal processing, geophysics, fluid dynamics, and plasma physics. Given its broad utility, a rigorous mathematical analysis of the JM equation is essential. The primary objective of this work is to derive exact soliton solutions using the Modified Sub-Equation (MSE) and Modified Auxiliary Equation (MAE) techniques.

View Article and Find Full Text PDF

The Southern California Bight is an ecologically important region for many local and migratory fauna. We combine bulk and compound-specific amino acid stable isotope measurements in the skeletons of proteinaceous octocorals with new regional ocean modeling system model output to explore biogeochemical changes at two locations within the Bight - Santa Cruz Basin and Santa Barbara Channel. Separated by the Channel Islands, these sites display distinct oceanographic regimes.

View Article and Find Full Text PDF

Observations of Cherenkov-Like Radial Wake in Water Waves.

Adv Sci (Weinh)

January 2025

Key Laboratory of Ocean Observation‑Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou, 310058, China.

Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!