Rapid 12-lead automated localization method: Comparison to electrocardiographic imaging (ECGI) in patient-specific geometry.

J Electrocardiol

Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, Canada; Department of Medicine, Dalhousie University, Halifax, Canada. Electronic address:

Published: October 2019

Background: Rapid accurate localization of the site of ventricular activation origin during catheter ablation for ventricular arrhythmias could facilitate the procedure. Electrocardiographic imaging (ECGI) using large lead sets can localize the origin of ventricular activation. We have developed an automated method to identify sites of early ventricular activation in real time using the 12-lead ECG. We aim to compare the localization accuracy of ECGI and the automated method, identifying pacing sites/VT exit based on a patient-specific model.

Methods: A patient undergoing ablation of VT on the left-ventricular endocardium and epicardium had 120-lead body-surface potential mapping (BSPM) recorded during the procedure. (1) ECGI methodology: The L1-norm regularization was employed to reconstruct epicardial potentials based on patient-specific geometry for localizing endocardial ventricular activation origin. We used the BSPM data corresponding to known endocardial pacing sites and a VT exit site identified by 3D contact mapping to analyze them offline. (2) The automatedmethod: location coordinates of pacing sites together with the time integral of the first 120 ms of the QRS complex of 3 ECG predictors (leads III, V2 and V6) were used to calculate patient-specific regression coefficients to predict the location of unknown sites of ventricular activation origin ("target" sites). Localization error was quantified over all pacing sites in millimeters by comparing the calculated location and the known reference location.

Results: Localization was tested for 14 endocardial pacing sites and 1 epicardial VT exit site. For 14 endocardial pacing sites the mean localization error of the automated method was significantly lower than that of the ECGI (8.9 vs. 24.9 mm, p < 0.01), when 10 training pacing sites are used. Emulation of a clinical procedure demonstrated that the automated method achieved localization error of <5 mm for the VT-exit site; while the ECGI approach approximately correlates with the site of VT exit from the scar within a distance of 18.4 mm.

Conclusions: The automated method using only 3 ECGs shows promise to localize the origin of ventricular activation as tested by pacing, and the VT-exit site and compares favourably to inverse solution calculation, avoiding cumbersome lead sets. As 12-lead ECG data is acquired by current 3D mapping systems, it is conceivable that the algorithm could be directly incorporated into a mapping system. Further validation in a prospective cohort study is needed to confirm and extend observations reported in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelectrocard.2018.07.022DOI Listing

Publication Analysis

Top Keywords

ventricular activation
20
pacing sites
20
activation origin
12
automated method
12
endocardial pacing
12
electrocardiographic imaging
8
imaging ecgi
8
patient-specific geometry
8
sites
8
based patient-specific
8

Similar Publications

Electrocardiographic imaging (ECGI) aims to noninvasively estimate heart surface potentials starting from body surface potentials. This is classically based on geometric information on the torso and the heart from imaging, which complicates clinical application. In this study, we aim to develop a deep learning framework to estimate heart surface potentials solely from body surface potentials, enabling wider clinical use.

View Article and Find Full Text PDF

Hypochlorous acid is one of the most widely distributed reactive oxygen species in vivo. It is usually used as a signal molecule to participate in various life activities such as immunity and metabolism, and plays a notable role in maintaining homeostasis. When hypochlorous acid level is abnormal in the body, it will lead to a variety of diseases, such as Parkinson's disease, Alzheimer's disease, atherosclerosis and cancer.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) is a sensory channel expressed in vagal afferent nerves that detect noxious stimuli. Trpa1 knockout accelerates age-related cardiac fibrosis and dysfunction in mice. This study investigated whether TRPA1 activation with its selective agonist, allyl isothiocyanate (AITC), prevents cardiac aging.

View Article and Find Full Text PDF

Background: Cardiac β3-adrenergic receptors (ARs) are upregulated in diseased hearts and mediate antithetic effects to those of β1AR and β2AR. β3AR agonists were recently shown to protect against myocardial remodeling in preclinical studies and to improve systolic function in patients with severe heart failure. However, the underlying mechanisms remain elusive.

View Article and Find Full Text PDF

Novel device therapies in heart failure: focus on patient selection.

Front Cardiovasc Med

February 2025

Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY, United States.

The increasing prevalence of heart failure (HF) has led to advancements in therapeutic strategies, including the development of new pharmacological treatments and the expansion of guideline recommendations across the spectrum of left ventricular ejection fractions. Despite these advancements, the full benefits of guideline-directed medical therapy (GDMT) are often limited by various barriers that result in incomplete implementation or suboptimal responses. For patients who cannot tolerate or only partially respond to GDMT, therapeutic options remain limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!