Shrimp fishing industry wastes are still a main problem with high environmental impact worldwide. In this study, chitosan with ultra-high molecular weight and deacetylation degree ≥85% was obtained from shrimp fishing industry waste from Argentinean Patagonia. Chitosan based microparticles capable to entrap salicylic acid, a phytohormone known to play major role in the regulation of plant defense response against various pathogens, were prepared using TPP as crosslinker. Unloaded microparticles and microparticles loading several salicylic acid amount were fully characterized exhibiting a size between 1.57 μm and 2.45 μm. Furthermore, a good PDI, entrappment efficiencies from 59% to 98% and salicylic acid sustained release over 24 h were achieved. Chitosan based microparticles were non toxic in most of the doses applied in lettuce seedlings. Instead, microparticles can positively modulate plant growth and have the potential to improve plant defense responses. In particular salicylic acid loaded microparticles effect was very promising for its application as activators of salicylic acid dependent plant defense responses in lettuce as a model of horticultural plant species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.08.019DOI Listing

Publication Analysis

Top Keywords

salicylic acid
24
shrimp fishing
12
fishing industry
12
plant defense
12
acid loaded
8
applied lettuce
8
lettuce seedlings
8
industry waste
8
chitosan based
8
based microparticles
8

Similar Publications

Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.

View Article and Find Full Text PDF

Citrus transcription factor CsERF1 is involved in the response to citrus tristeza disease.

Front Plant Sci

January 2025

National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.

Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.

View Article and Find Full Text PDF

Transcriptome analysis of nitrate enhanced tobacco resistance to aphid infestation.

Plant Physiol Biochem

January 2025

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China. Electronic address:

Tobacco is an economic crop that primarily relies on nitrate (NO) as its nitrogen source, and tobacco aphid is one of the significant pests that harm its growth. However, the impact of NO supply on the resistance of tobacco to aphids remains unclear. Present study investigated the effects of different NO concentrations supply on the reproductive capacity of tobacco aphids, impact of aphid infestation on tobacco growth, secondary metabolic and transcription changes.

View Article and Find Full Text PDF

ZmDREB1A controls plant immunity via regulating salicylic acid metabolism in maize.

Plant J

January 2025

National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.

DREB1A, a pivotal transcription factor, has long been known to regulate plant abiotic stress tolerance. However, its role in plant biotic stress tolerance and the underlying mechanisms have remained a mystery. Our research reveals that the maize ZmDREB1A gene is up-regulated in maize seedlings when the plants are infected by Rhizoctonia solani (R.

View Article and Find Full Text PDF

Resonances in Low-Energy Electron Collisions with Salicylic Acid.

J Phys Chem A

January 2025

Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba, Paraná, Brazil.

In this work, we report elastic integral, differential, and momentum-transfer cross sections for the scattering of low-energy electrons by salicylic acid. The cross sections were calculated with the Schwinger multichannel method implemented with norm-conserving pseudopotential within the static-exchange and static-exchange plus polarization (SEP) approximations for energies up to 15 eV. In the SEP approximation, four π* resonances were found at around 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!