Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.

J Neuroeng Rehabil

Applied Rehabilitation Technology Lab (ART-Lab), Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany.

Published: September 2018

Background: Sensory feedback is critical for grasping in able-bodied subjects. Consequently, closing the loop in upper-limb prosthetics by providing artificial sensory feedback to the amputee is expected to improve the prosthesis utility. Nevertheless, even though amputees rate the prospect of sensory feedback high, its benefits in daily life are still very much debated. We argue that in order to measure the potential functional benefit of artificial sensory feedback, the baseline open-loop performance needs to be established.

Methods: The myoelectric control of naïve able-bodied subjects was evaluated during modulation of electromyographic signals (EMG task), and grasping with a prosthesis (Prosthesis task). The subjects needed to activate the wrist flexor muscles and close the prosthesis to reach a randomly selected target level (routine grasping). To assess the baseline performance, the tasks were performed with a different extent of implicit feedback (proprioception, prosthesis motion and sound). Finally, the prosthesis task was repeated with explicit visual force feedback. The subjects' ability to scale the prosthesis command/force was assessed by testing for a statistically significant increase in the median of the generated commands/forces between neighboring levels. The quality of control was evaluated by computing the median absolute error (MAE) with respect to the target.

Results: The subjects could successfully scale their motor commands and generated prosthesis forces across target levels in all tasks, even with the least amount of implicit feedback (only muscle proprioception, EMG task). In addition, the deviation of the generated commands/forces from the target levels decreased with additional feedback. However, the increase in implicit feedback, from proprioception to prosthesis motion and sound, seemed to have a more substantial effect than the final introduction of explicit feedback. Explicit feedback improved the performance mainly at the higher target-force levels.

Conclusions: The study establishes the baseline performance of myoelectric control and prosthesis grasping force. The results demonstrate that even without additional feedback, naïve subjects can effectively modulate force with good accuracy with respect to that achieved when increasing the amount of feedback information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122439PMC
http://dx.doi.org/10.1186/s12984-018-0422-7DOI Listing

Publication Analysis

Top Keywords

sensory feedback
16
feedback
14
implicit feedback
12
prosthesis
11
routine grasping
8
able-bodied subjects
8
artificial sensory
8
myoelectric control
8
emg task
8
prosthesis task
8

Similar Publications

: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.

View Article and Find Full Text PDF

This review evaluates needle navigation technologies in minimally invasive cardiovascular surgery (MICS), identifying their strengths and limitations and the requirements for an ideal needle navigation system that features optimal guidance and easy adoption in clinical practice. A systematic search of PubMed, Web of Science, and IEEE databases up until June 2024 identified original studies on needle navigation in MICS. Eligible studies were those published within the past decade and that performed MICS requiring needle navigation technologies in adult patients.

View Article and Find Full Text PDF

Complex motor skills involve intricate sequences of movements that require precise temporal coordination across multiple body parts, posing challenges to mastery based on perceived error or reward. One approach that has been widely used is to decompose such skills into simpler, constituent movement elements during the learning process, thereby aligning the task complexity with the learners' capacity for accurate execution. Despite common belief and prevalent adoption, the effectiveness of this method remains elusive.

View Article and Find Full Text PDF

Functional Motor Disorders (FMD) consists in symptoms of altered motor function not attributable to typical neurological and medical conditions. This study aimed to explore explicit and perceptual measures of Sense of Ownership, Agency, and Body Schema in FMD patients, and assess whether these alterations are specific to FMD or shared with other functional disturbances. Twelve FMD patients, ten with Irritable Bowel Syndrome (IBS, a functional gastrointestinal disorder) and fifteen healthy controls (HC) underwent: (i) the Mirror Box Illusion (MBI), requiring participants to perform tapping movements with their dominant hand concealed from sight, while visual feedback was provided by an alien hand under visuo-motor congruency or incongruency conditions; (ii) a Forearm Bisection Task before and after exposure to the MBI, and the Embodiment Questionnaire after the MBI, as perceptual and explicit indices of the embodiment illusion, respectively.

View Article and Find Full Text PDF

An origami-based tactile sensory ring utilizing multilayered conductive paper substrates presents an innovative approach to wearable health applications. By harnessing paper's flexibility and employing origami folding, the sensors integrate structural stability and self-packaging without added encapsulation layers. Knot-shaped designs create loop-based systems that secure conductive paper strips and protect sensing layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!