Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant.

Sci Total Environ

Penobscot River Mercury Study, 115 Oystercatcher Place, Salt Spring Island, B.C., V8K 2W5, Canada. Electronic address:

Published: February 2019

Mercury (Hg) concentrations in aquatic biota, including fish and shellfish, were measured over the period 2006-2012 in the lower Penobscot River and upper estuary (Maine, USA). The Penobscot is a system contaminated with Hg by a chlor-alkali plant that operated from 1967 to 2000, discharging 6-12 tons of mercury into the river. Mercury levels in aquatic biota were highest at sites downstream of the chlor-alkali plant and spatial trends were similar to those of sediments. Mean total Hg concentrations in fish muscle (adjusted for size or age) in the most affected areas were 521 (480, 566; 95% CI) ng/g ww in American eels, 321 (261,395) in mummichog, 121 (104, 140) in rainbow smelt, 155 (142,169) in tomcod, 55.2 (42.7,71.4) in winter flounder, and 328 (259,413) in American lobster tail and 522 (488,557) ng/g dw in blue mussel. Levels exceeded the 50 ng/g ww considered protective for piscivorous predators and were of concern for human health, with American eels and American lobster exceeding Maine's mercury action level of 200 ng/g ww. Calculations of trophic position (using nitrogen isotopes) suggested that the spatial patterns observed in total Hg concentrations were not due to changes in feeding habits of the species. Fish feeding in benthic food webs, as defined by stomach content and stable carbon isotope analyses, showed no change in Hg concentrations over time. In contrast, declining trends in Hg were found in two species dependent on pelagic food webs. The absence of declines in Hg concentrations in the benthically-based food webs, despite the fact that most Hg was discharged into the system >40 years ago, is consistent with the long recovery predicted from dated sediment cores and from similar studies elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.08.203DOI Listing

Publication Analysis

Top Keywords

chlor-alkali plant
12
food webs
12
lower penobscot
8
penobscot river
8
maine usa
8
aquatic biota
8
total concentrations
8
american eels
8
american lobster
8
mercury
5

Similar Publications

Long term substantial impacts of historic Chlor-Alkali production as a newly recognized source of polyhalogenated carbazoles in aquatic environments.

J Environ Sci (China)

July 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Bottom sediments of the North American Great Lakes are characterized by a high loading (over 3,000 tonnes) of polyhalogenated carbazoles (PHCZs). The origin of this environmental contaminant loading is unclear. Here, we first examined PHCZs levels and profiles in sediment, lotus, and fish from the Ya-Er Lake (China) that has been under the influence of an obsolete chlor-alkali facility for forty years and discovered substantial PHCZs contamination.

View Article and Find Full Text PDF

Seawater alkalization via an energy-efficient electrochemical process for CO capture.

Proc Natl Acad Sci U S A

November 2024

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

Electrochemical pH-swing strategies offer a promising avenue for cost-effective and energy-efficient carbon dioxide (CO) capture, surpassing the traditional thermally activated processes and humidity-sensitive techniques. The concept of elevating seawater's alkalinity for scalable CO capture without introducing additional chemical as reactant is particularly intriguing due to its minimal environmental impact. However, current commercial plants like chlor-alkali process or water electrolysis demand high thermodynamic voltages of 2.

View Article and Find Full Text PDF

Characterizing visual field loss from past mercury exposure in an Indigenous riverine community (Grassy Narrows First Nation, Canada): a cluster-based approach.

Environ Health

October 2024

Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (CINBIOSE), CP 8888, Université du Québec À Montréal, Succ. Centreville, Montréal, Québec, H3C 3P8, Canada.

Background: Between 1962 and 1975, a chlor-alkali plant in Canada discharged approximately 9 metric tons of mercury (Hg) into the Wabigoon River. Over the following decades, biomarkers of Hg exposure of persons from Grassy Narrows First Nation (Asubpeeschoseewagong Anishinabek), located downriver from the discharge, reflected Hg concentrations in fish. Hg exposure is known to target the calcarine fissure, resulting in visual field (VF) loss.

View Article and Find Full Text PDF

Tracking mercury sources in the Wabigoon River: Use of stable mercury isotopes in bioindicator organisms.

Chemosphere

October 2024

Trent University, Peterborough Ontario, 600 W Bank Dr, Peterborough, ON K9L 0G2, Canada.

Mercury concentrations remain elevated in sediments and biota of the Wabigoon River downstream from Dryden, Ontario, the home of a former chlor-alkali plant. Understanding the current extent and severity of mercury contamination downstream of this industrial legacy site is of great importance in managing the mercury contamination within the traditional territory of Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation), located downstream of Dryden. The objective of this study was to use mercury stable isotope ratio analysis to distinguish between legacy mercury from the former chlor-alkali plant and mercury from geogenic sources.

View Article and Find Full Text PDF

Marginal lands have been proposed to produce non-food crop biomass for energy or green materials. For this purpose, the selection, implementation, and growth optimization of plant species on such lands are key elements to investigate to achieve relevant plant yields. Stinging nettle () is a herbaceous perennial that grows spontaneously on contaminated lands and was described as suitable to produce fibers for material applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!