The widespread use of copper based nanomaterials has been accompanied by an increasing interest in understanding their potential risks. It is essential to understand the effects of these nanoparticles on edible crops by performing long-term experiments at relevant exposure concentrations. Sugarcane is the source of 70% of the world's sugar supply and the widespread use of refined sugar and the consumption of raw sugarcane can provide a route for nanoparticles to enter the food supply. In order to evaluate the biochemical and physiological effects of copper nanoparticle exposure, sugarcane was grown for one year in soil amended with 20, 40, and 60 mg/kg of Kocide 3000 (a copper based fungicide), copper metal nanoparticles, micro-sized CuO, and CuCl. The results show that stress indicators such as catalase and ascorbic peroxidase enzymatic activity in the sugarcane plant were activated by all the copper based materials at different concentrations. Sugarcane plants exposed to nearly all copper treatments showed dosage dependent increases in copper concentrations in root tissues. Translocation of copper to aerial tissues was minimal, with copper concentrations not being significantly different from controls. In addition, Chlorophyll A content was higher in plants treated with Kocide 3000 at 20 and 60 mg/kg, μCuO at 20 mg/kg, and CuCl at 20 and 60 mg/kg. To our knowledge, this is the first report on the effects of nano-copper compounds in sugarcane crop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.08.337 | DOI Listing |
Front Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFJACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFChem Catal
November 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.
View Article and Find Full Text PDFHeliyon
December 2024
Mechanical Engineering Division, Faculty of Engineering, Khon Kaen University, Thailand.
Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
Purpose: Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!