Single chain variable fragment antibodies directed against SOD1 ameliorate disease in mutant SOD1 transgenic mice.

Neurobiol Dis

Department of Neurology, University of Chicago Medical Center, 5841 S. Maryland Avenue, MC2030, Chicago, IL 60637, United States. Electronic address:

Published: January 2019

Mutations in Cu/Zn superoxide dismutase (SOD1) are the cause of ~20% of cases of familial ALS (FALS), which comprise ~10% of the overall total number of cases of ALS. Mutant (mt) SOD1 is thought to cause FALS through a gain and not loss in function, perhaps as a result of the mutant protein's misfolding and aggregation. Previously we used a phage display library to raise single chain variable fragment antibodies (scFvs) against SOD1, which were found to decrease aggregation of mtSOD1 and toxicity in vitro. In the present study, we show that two scFvs directed against SOD1 ameliorate disease in G93A mtSOD1 transgenic mice and also decrease motor neuron loss, microgliosis, astrocytosis, as well as SOD1 burden and aggregation. The results suggest that the use of antibodies or antibody mimetics directed against SOD1 may be a useful therapeutic direction in mtSOD1-induced FALS. Since studies suggest that wild type SOD1 may be misfolded similar to that seen with mtSOD1, this therapeutic direction may be effective in sporadic as well as FALS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2018.08.021DOI Listing

Publication Analysis

Top Keywords

directed sod1
12
sod1
9
single chain
8
chain variable
8
variable fragment
8
fragment antibodies
8
sod1 ameliorate
8
ameliorate disease
8
mutant sod1
8
transgenic mice
8

Similar Publications

Roles of N-methyladenosine in LncRNA changes and oxidative damage in cadmium-induced pancreatic β-cells.

Toxicology

January 2025

School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China. Electronic address:

N-methyladenosine (mA) modification and LncRNAs play crucial regulatory roles in various pathophysiological processes, yet roles of mA modification and the relationship between mA modification and LncRNAs in cadmium-induced oxidative damage of pancreatic β-cells have not been fully elucidated. In this study, mA agonist entacapone and inhibitor 3-deazadenosine were used to identify the effects of mA on cadmium-induced oxidative damage as well as LncRNA changes. Our results indicate that elevated levels of mA modification by entacapone can rescue the cell viability and attenuate the cell apoptosis, while the inhibition levels of mA modification can exacerbate the cell death.

View Article and Find Full Text PDF

The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.

View Article and Find Full Text PDF

Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them.

View Article and Find Full Text PDF
Article Synopsis
  • Pyrrolidines, like the compound SS13, are important in medicine due to their potential effects against various diseases, including cancer, as many drugs contain their structure.
  • The study investigates how SS13 induces oxidative stress and activates autophagy in colorectal cancer cell lines (HCT116 and Caco-2), hypothesizing that these processes contribute to cancer cell death.
  • Results show that SS13 increases oxidative stress and autophagy markers, leading to decreased cancer cell proliferation, while inhibiting autophagy with chloroquine results in higher cell survival, highlighting the role of autophagy in cell death.
View Article and Find Full Text PDF

CPT1A mediates radiation sensitivity in colorectal cancer.

Elife

November 2024

Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

The prevalence and mortality rates of colorectal cancer (CRC) are increasing worldwide. Radiation resistance hinders radiotherapy, a standard treatment for advanced CRC, leading to local recurrence and metastasis. Elucidating the molecular mechanisms underlying radioresistance in CRC is critical to enhance therapeutic efficacy and patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!