A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultra-low tidal volume ventilation-A novel and effective ventilation strategy during experimental cardiopulmonary resuscitation. | LitMetric

Background: The effects of different ventilation strategies during CPR on patient outcomes and lung physiology are still poorly understood. This study compares positive pressure ventilation (IPPV) to passive oxygenation (CPAP) and a novel ultra-low tidal volume ventilation (ULTVV) regimen in an experimental ventricular fibrillation animal model.

Study Design: Prospective randomized controlled trial.

Animals: 30 male German landrace pigs (16-20 weeks).

Methods: Ventricular fibrillation was induced in anesthetized and instrumented pigs and the animals were randomized into three groups. Mechanical CPR was initiated and ventilation was either provided by means of standard IPPV (RR: 10/min, V: 8-9 ml/kg, FO: 1,0, PEEP: 5 mbar), CPAP (O-Flow: 10 l/min, PEEP: 5 mbar) or ULTVV (RR: 50/min, V: 2-3 ml/kg, FO: 1,0, PEEP: 5 mbar). Guideline-based advanced life support was applied for a maximum of 4 cycles and animals achieving ROSC were monitored for 6 h before terminating the experiment. Ventilation/perfusion ratios were performed via multiple inert gas elimination, blood gas analyses were taken hourly and extended cardiovascular measurements were collected constantly. Brain and lung tissue samples were taken and analysed for proinflammatory cytokine expression.

Results: ULTVV provided sufficient oxygenation and ventilation during CPR while demanding significantly lower respiratory and intrathoracic pressures. V/Q mismatch was significantly decreased and lung injury was mitigated in surviving animals compared to IPPV and CPAP. Additionally, cerebral cytokine expression was dramatically reduced.

Conclusion: Ultra-low-volume ventilation during CPR in a porcine model is feasible and may provide lung-protective benefits as well as neurological outcome improvement due to lower inflammation. Our results warrant further studies and might eventually lead to new therapeutic options in the resuscitation setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2018.08.031DOI Listing

Publication Analysis

Top Keywords

peep 5 mbar
12
ultra-low tidal
8
tidal volume
8
ventricular fibrillation
8
ventilation cpr
8
ventilation
7
volume ventilation-a
4
ventilation-a novel
4
novel effective
4
effective ventilation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!