A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance analysis of different classification algorithms using different feature selection methods on Parkinson's disease detection. | LitMetric

Performance analysis of different classification algorithms using different feature selection methods on Parkinson's disease detection.

J Neurosci Methods

Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Gazimagusa, Mersin 10, Turkey.

Published: November 2018

Background: In diagnosis of neurodegenerative diseases, the three-dimensional magnetic resonance imaging (3D-MRI) has been heavily researched. Parkinson's disease (PD) is one of the most common neurodegenerative disorders.

New Method: The performances of five different classification approaches using five different attribute rankings each followed with an adaptive Fisher stopping criteria feature selection (FS) method are evaluated. To improve the performance of PD detection, a source fusion technique which combines the gray matter (GM) and white (WM) tissue maps and a decision fusion technique which combines the outputs of all classifiers using the correlation-based feature selection (CFS) method by majority voting are used.

Results: Among the five FS methods, the CFS provides the highest results for all five classification algorithms and the SVM provides the best classification performances for all five different FS methods. The classification accuracy of 77.50% and 81.25% are obtained for the GM and WM tissues, respectively. However, the fusion of GM and WM datasets improves the classification accuracy of the proposed methodology up to 95.00%.

Comparison With Existing Methods: An f-contrast is used to generate 3D masks for GM and WM datasets and a fusion technique, combining the GM and WM datasets is used. Several classification algorithms using several FS methods are performed and a decision fusion technique is used.

Conclusions: Using the combination of the 3D masked GM and WM tissue maps and the fusion of the outputs of multiple classifiers with CFS method gives the classification accuracy of 95.00%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2018.08.017DOI Listing

Publication Analysis

Top Keywords

fusion technique
16
classification algorithms
12
feature selection
12
classification accuracy
12
classification
8
parkinson's disease
8
technique combines
8
tissue maps
8
decision fusion
8
cfs method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!