Despite their specific methodologies, all current noncontact printing techniques such as inkjet printing (IJP), involve the break-up of a liquid meniscus during the separation of the ink droplet from the bulk ink reservoir. Often, the break-up of a liquid meniscus results in the formation of one or more satellite droplet whose volumes are several orders of magnitude smaller than the primary droplet. Many attempts are directed to suppress or control the formation of satellite droplets because they blur the printing result. For the first time, a simple mechanism by which a single satellite droplet is exclusively formed and directed to the substrate by a gas stream while the primary droplet remains attached to a metal rod used for controlling the formation and break-up of the meniscus is reported. High printing resolution is demonstrated by satellite droplets printing (SDP) without the need for small orifices which are prone to clogging. Furthermore, the droplet generation from a large orifice enables SDP to handle viscous inks which has remained challenging for traditional IJP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201802583 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFLangmuir
January 2025
Thermodynamik, Technische Universität Berlin, 10587 Berlin, Germany.
The binary collision of nanoscale droplets is studied with molecular dynamics simulation for droplets consisting of up to 2 × 10 molecules interacting via a truncated and shifted form of the Lennard-Jones potential. Considering head-on collisions of droplets with a temperature near the triple point that occur in a saturated vapor of the same fluid, this work explores a range of collision topologies. Four droplet sizes, with a radius ranging from 30 to 120 molecule diameters, are simulated with a varying initial relative collision velocity, covering 36 cases in total.
View Article and Find Full Text PDFJ Elect Propuls
July 2024
RMC Advanced Propulsion and Plasma Exploration Laboratory (RAPPEL), Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, 13 General Crerar Crescent, Kingston, K7K 7B4 Ontario Canada.
Electrospray thrusters are a promising electric micropropulsion technology which could be used to meet the propulsion needs of nanosatellites, or for fine attitude control of larger spacecraft. Multimodal propulsion is the integration of two or more propulsion modes into a system which utilizes a common propellant. Indeed, spacecraft mission simulations and models have shown that this type of multimode propulsion capacity is exciting because of the flexibility and adaptability it provides mission designers and planners.
View Article and Find Full Text PDFNature
December 2024
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland.
Aircraft observations have revealed ubiquitous new particle formation in the tropical upper troposphere over the Amazon and the Atlantic and Pacific oceans. Although the vapours involved remain unknown, recent satellite observations have revealed surprisingly high night-time isoprene mixing ratios of up to 1 part per billion by volume (ppbv) in the tropical upper troposphere. Here, in experiments performed with the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we report new particle formation initiated by the reaction of hydroxyl radicals with isoprene at upper-tropospheric temperatures of -30 °C and -50 °C.
View Article and Find Full Text PDFAnn Surg Oncol
November 2024
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Background: Peritumoral edema on staging magnetic resonance imaging (MRI) is associated with higher local recurrence in soft tissue sarcoma (STS). This may relate to the presence of satellite malignant cells that are difficult to distinguish from benign atypia, leading to over- or undertreatment. This study evaluated a novel targeted molecular approach to identify malignancy in STS peritumoral planes as a means to improve personalized care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!