Studying the regulation of efferocytosis requires methods that are able to accurately quantify the uptake of apoptotic cells and to probe the signaling and cellular processes that control efferocytosis. This quantification can be difficult to perform as apoptotic cells are often efferocytosed piecemeal, thus necessitating methods which can accurately delineate between the efferocytosed portion of an apoptotic target versus residual unengulfed cellular fragments. The approach outlined herein utilizes dual-labeling approaches to accurately quantify the dynamics of efferocytosis and efferocytic capacity of efferocytes such as macrophages. The cytosol of the apoptotic cell is labeled with a cell-tracking dye to enable monitoring of all apoptotic cell-derived materials, while surface biotinylation of the apoptotic cell allows for differentiation between internalized and non-internalized apoptotic cell fractions. The efferocytic capacity of efferocytes is determined by taking fluorescent images of live or fixed cells and quantifying the amount of bound versus internalized targets, as differentiated by streptavidin staining. This approach offers several advantages over methods such as flow cytometry, namely the accurate delineation of non-efferocytosed versus efferocytosed apoptotic cell fractions, the ability to measure efferocytic dynamics by live-cell microscopy, and the capacity to perform studies of cellular signaling in cells expressing fluorescently-labeled transgenes. Combined, the methods outlined in this protocol serve as the basis for a flexible experimental approach that can be used to accurately quantify efferocytic activity and interrogate cellular signaling pathways active during efferocytosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128118 | PMC |
http://dx.doi.org/10.3791/58149 | DOI Listing |
PLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
J Vis Exp
January 2025
Department of Biology, Mount Saint Vincent University;
Zebrafish scales offer a variety of advantages for use in standard laboratories for teaching and research purposes. Scales are easily collected without the need for euthanasia, regenerate within a couple of weeks, and are translucent and small, allowing them to be viewed using a standard microscope. Zebrafish scales are especially useful in educational environments, as they provide a unique opportunity for students to engage in hands-on learning experiences, particularly in understanding cellular dynamics and in vitro culturing methods.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Departments of Obstetrics and Gynecology, School of Medicine, Akdeniz University, Antalya, Turkey.
Preeclampsia (PE) is a severe placental complication occurring after the 20th week of pregnancy. PE is associated with inflammation and an increased immune reaction against the fetus. TYRO3 and PROS1 suppress inflammation by clearing apoptotic cells.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFHepatol Commun
February 2025
Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
Background: Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!