Several ways to produce superhydrophobic metal surfaces are presented in this work. Aluminum was chosen as the metal substrate due to its wide use in industry. The wettability of the produced surface was analyzed by bouncing drop experiments and the topography was analyzed by confocal microscopy. In addition, we show various methodologies to measure its durability and anti-icing properties. Superhydrophobic surfaces hold a special texture that must be preserved to keep their water-repellency. To fabricate durable surfaces, we followed two strategies to incorporate a resistant texture. The first strategy is a direct incorporation of roughness to the metal substrate by acid etching. After this surface texturization, the surface energy was decreased by silanization or fluoropolymer deposition. The second strategy is the growth of a ceria layer (after surface texturization) that should enhance the surface hardness and corrosion resistance. The surface energy was decreased with a stearic acid film. The durability of the superhydrophobic surfaces was examined by a particle impact test, mechanical wear by lateral abrasion, and UV-ozone resistance. The anti-icing properties were explored by studying the ability to repeal subcooled water, freezing delay, and ice adhesion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126818 | PMC |
http://dx.doi.org/10.3791/57635 | DOI Listing |
Small
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China.
Innovative design strategies of fog harvesting devices (FHDs) demonstrate promising remedy for water crisis in arid areas. 1D FHDs ensure unimpeded wind circulation and can be manufactured more cost-effectively for extensive regions. Inspired by cactus thorns, desert beetles, and spider silk, two metal organic frameworks (MOFs) functionalized Cu wires with opposite wettability are double-twisted by a mechanical twisting machine, forming 1D double-spiral Cu wires with alternating superhydrophobic/superhydrophilic dual-MOF patterns.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Mechanical and Ocean Engineering, Mokpo National University, Muan-gun 58554, Jeollanam-do, Republic of Korea.
Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this research, a new approach is proposed for the fabrication of long-lasting superhydrophobic surfaces using ethyl cyanoacrylate (ECA) and a primer.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Shandong Institute for Product Quality Inspection, Jinan, 250102, PR China.
Photothermal materials are considered as promising materials because they can convert clean solar energy into thermal and electrical energy. However, developing degradable photothermal materials with highly efficient solar-thermal-electric energy conversion performance remains a huge challenge. Here, a superhydrophobic bio-polyimide/carbon quantum dots aerogel (S-BioPI/CQDs) is synthesized.
View Article and Find Full Text PDFMater Horiz
November 2024
Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany.
While the accessible pores render an enormous variety of functionalities to the bulk of metal-organic frameworks (MOFs), the outer surfaces exposed by these crystalline materials also offer unique characteristics not available when using conventional substrates. By grafting hydrocarbon chains to well-defined MOF thin films (SURMOFs) prepared using layer-by-layer methods, we were able to fabricate superhydrophobic substrates with static water contact angles over 160°. A detailed theoretical modelling of the hydrocarbon chains grafted on the outer SURMOF surface with well-defined spacing between anchoring points reveals that the grafted hydrocarbon chains behave similarly to polymer brushes during wetting, where conformational entropy is traded with mixing entropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!