A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple Cellular Transport and Binding Processes of Unesterified Docosahexaenoic Acid in Outer Blood-Retinal Barrier Retinal Pigment Epithelial Cells. | LitMetric

Docosahexaenoic acid (DHA, 22 : 6) is an essential omega-3 long-chain polyunsaturated fatty acid that plays a pivotal role in vision. The purpose of this study was to clarify the cellular uptake and binding processes of free and protein-bound unesterified DHA in retinal pigment epithelial cell (RPE) line ARPE-19 as a model of the human outer blood-retinal barrier and isolated porcine RPE cell fractions. Uptake of free [C]DHA by ARPE-19 cells was saturable with a Michaelis-Menten constant of 283 µM, and was significantly inhibited by eicosapentaenoic acid, arachidonic acid, and linoleic acid, but not by oleic acid. Further, the uptakes of [C]DHA associated with retinol-binding protein ([C]DHA-RBP), [C]DHA associated with low-density lipoprotein ([C]DHA-LDL) and [C]DHA associated with bovine serum albumin ([C]DHA-BSA) in ARPE-19 cells increased time-dependently at 37°C, and were significantly reduced at 4°C, suggesting the involvement of energy-dependent transport processes. [C]DHA-LDL uptake by ARPE-19 cells was significantly inhibited by excess unlabeled LDL, but not by an inhibitor of scavenger receptor B type I. Fatty acid transport protein (FATP) 2 and 4 mRNAs were expressed in ARPE-19 cells, and [C]DHA uptake was observed in FATP2- and FATP4-expressing Xenopus oocytes. Photo-reactive crosslinking and mass spectrometry analyses identified 65-kDa retinal pigment epithelium-specific protein (RPE65) as a DHA-binding protein in porcine RPE cell membrane fractions. Thus, RPE cells possess multiple cellular transport/binding processes for unesterified DHA, involving at least partly FATP2, FATP4, LDL, RBP, and RPE65.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b18-00185DOI Listing

Publication Analysis

Top Keywords

arpe-19 cells
16
retinal pigment
12
[c]dha associated
12
multiple cellular
8
binding processes
8
processes unesterified
8
acid
8
docosahexaenoic acid
8
outer blood-retinal
8
blood-retinal barrier
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!