When analyzing an unknown by electron-excited energy dispersive X-ray spectrometry, with the entire periodic table possibly in play, how does the analyst discover minor and trace constituents when their peaks are overwhelmed by the intensity of an interfering peak(s) from a major constituent? In this paper, we advocate for and demonstrate an iterative analytical approach, alternating qualitative analysis (peak identification) and standards-based quantitative analysis with peak fitting. This method employs two "tools": (1) monitoring of the "raw analytical total," which is the sum of all measured constituents as well as any such as oxygen calculated by the method of assumed stoichiometry, and (2) careful inspection of the "peak fitting residual spectrum" that is constructed as part of the quantitative analysis procedure in the software engine DTSA-II (a pseudo-acronym) from the National Institute of Standards and Technology. Elements newly recognized after each round are incorporated into the next round of quantitative analysis until the limits of detection are reached, as defined by the total spectrum counts.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927618012394DOI Listing

Publication Analysis

Top Keywords

quantitative analysis
12
energy dispersive
8
analysis peak
8
analysis
5
iterative qualitative-quantitative
4
qualitative-quantitative sequential
4
sequential analysis
4
analysis strategy
4
strategy electron-excited
4
electron-excited x-ray
4

Similar Publications

Metastasis is a major cause of poor prognosis of pancreatic cancer. Exosomes (Exos) regulate cancer progression by modulating macrophage polarization. This study aimed to investigate the effects of cancer-associated fibroblast (CAF)-released Exos on macrophage polarization in pancreatic cancer and the molecular mechanisms.

View Article and Find Full Text PDF

Control of cell proliferation is critical for the lymphocyte life cycle. However, little is known about how stage-specific alterations in cell cycle behavior drive proliferation dynamics during T cell development. Here, we employed in vivo dual-nucleoside pulse labeling combined with the determination of DNA replication over time as well as fluorescent ubiquitination-based cell cycle indicator mice to establish a quantitative high-resolution map of cell cycle kinetics of thymocytes.

View Article and Find Full Text PDF

Evidence-Based Medicine in Otolaryngology Part 17: A Qualitative Research Primer.

Otolaryngol Head Neck Surg

January 2025

Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.

As qualitative data analysis becomes more frequently applied within the fields of medicine and surgery, it is beneficial to expand our knowledge of the utility, methodology, and interpretation of these techniques. While qualitative research serves a distinct purpose and differs from quantitative research, both can be approached with diligence, with careful techniques that are similarly maintained and respected. In advance of this installment in the Evidence-Based Medicine in Otolaryngology series, we presented a comparison between qualitative and quantitative methods.

View Article and Find Full Text PDF

The aim of the present study was to demonstrate the phytochemical characterisation, antioxidant and antimicrobial properties of methanol extracts of leaf parts of . The Phytochemical characterisation by GC-MS analysis revealed the presence of 30 phytoconstituents such as Methyl commate A (14.69%), Phytol (13.

View Article and Find Full Text PDF

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!