To achieve greater separation performance and antifouling properties in a thin-film composite (TFC) nanofiltration membrane, cellulose nanocrystals (CNCs) were incorporated into the polyamide layer of a TFC membrane for the first time. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful formation of the CNC-polyamide composite layer. Surface characterization results revealed differences in the morphologies of the CNC-TFC membranes compared with a control membrane (CNC-TFC-0). Streaming potential measurements and molecular weight cutoff (MWCO) characterizations showed that the CNC-TFC membranes exhibited a greater negative surface charge and a smaller MWCO as the CNC content increased. The CNC-TFC membranes showed enhanced hydrophilicity and increased permeability. With the incorporation of only 0.020 wt % CNCs, the permeability of the CNC-TFC membrane increased by 60.0% over that of the polyamide TFC without CNC. Rejection of NaSO and MgSO by the CNC-TFC membranes was similar to that observed for the CNC-TFC-0 membrane, at values of approximately 98.7% and 98.8%, respectively, indicating that divalent salt rejection was not sacrificed. The monovalent ion rejection tended to increase as the CNC content increased. In addition, the CNC-TFC membranes exhibited enhanced antifouling properties due to their increased hydrophilicity and more negatively charged surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b04102 | DOI Listing |
Sci Total Environ
November 2020
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
To overcome the permeability-selectivity limitation and improve the performance of desalination membranes, novel methods and design strategies are needed to prepare new types of thin film composite (TFC) nanofiltration (NF) membranes. In this work, a modified TFC membrane with a sandwiched layer and a surface layer was fabricated through a facile additional two-step approach. The microfiltration (MF) substrate and TFC surface were modified by a cellulose nanocrystal (CNC) sandwiched layer and a polydopamine (PDA) layer, respectively.
View Article and Find Full Text PDFEnviron Sci Technol
October 2018
Department of Civil and Environmental Engineering , Duke University, Durham , North Carolina 27708 , United States.
To achieve greater separation performance and antifouling properties in a thin-film composite (TFC) nanofiltration membrane, cellulose nanocrystals (CNCs) were incorporated into the polyamide layer of a TFC membrane for the first time. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful formation of the CNC-polyamide composite layer. Surface characterization results revealed differences in the morphologies of the CNC-TFC membranes compared with a control membrane (CNC-TFC-0).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!